Suppr超能文献

二聚体拟肽通过二聚化刺突蛋白来预防 SARS-CoV-2 感染。

A dimeric proteomimetic prevents SARS-CoV-2 infection by dimerizing the spike protein.

机构信息

Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.

Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India.

出版信息

Nat Chem Biol. 2022 Oct;18(10):1046-1055. doi: 10.1038/s41589-022-01060-0. Epub 2022 Jun 2.

Abstract

Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.

摘要

蛋白质三级结构模拟物是靶向大型蛋白质-蛋白质相互作用界面的有价值的工具。在这里,我们展示了一种从先前报道的靶向严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 受体结合域 (RBD) 的三螺旋束微蛋白设计二聚体螺旋发夹基序的策略。通过截短第三个螺旋和优化微蛋白的螺旋间环残基,我们开发了一种热稳定的二聚体螺旋发夹。二聚体四螺旋束以 2:2 化学计量与人类血管紧张素转换酶 2 (ACE2) 竞争与 RBD 的结合。低温电子显微镜显示四螺旋束形成二聚体刺突外域三聚体,其中来自刺突蛋白的所有三个 RBD 以开放构象头对头附着,揭示了一种新的病毒中和机制。该蛋白模拟物可保护仓鼠免受高剂量复制性 SARS-CoV-2 病毒的挑战,证明了通过靶向二聚化抑制蛋白质-蛋白质相互作用的这类肽的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/9512702/7dcc8eede344/41589_2022_1060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验