Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.
Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India.
Nat Chem Biol. 2022 Oct;18(10):1046-1055. doi: 10.1038/s41589-022-01060-0. Epub 2022 Jun 2.
Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.
蛋白质三级结构模拟物是靶向大型蛋白质-蛋白质相互作用界面的有价值的工具。在这里,我们展示了一种从先前报道的靶向严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 受体结合域 (RBD) 的三螺旋束微蛋白设计二聚体螺旋发夹基序的策略。通过截短第三个螺旋和优化微蛋白的螺旋间环残基,我们开发了一种热稳定的二聚体螺旋发夹。二聚体四螺旋束以 2:2 化学计量与人类血管紧张素转换酶 2 (ACE2) 竞争与 RBD 的结合。低温电子显微镜显示四螺旋束形成二聚体刺突外域三聚体,其中来自刺突蛋白的所有三个 RBD 以开放构象头对头附着,揭示了一种新的病毒中和机制。该蛋白模拟物可保护仓鼠免受高剂量复制性 SARS-CoV-2 病毒的挑战,证明了通过靶向二聚化抑制蛋白质-蛋白质相互作用的这类肽的前景。