Suppr超能文献

热网中日用和季节性用热规律分析。

Daily and seasonal heat usage patterns analysis in heat networks.

机构信息

Department of Information and Communication Engineering, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Republic of Korea.

Department of Artificial Intelligence, Sejong University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2022 Jun 2;12(1):9165. doi: 10.1038/s41598-022-13030-6.

Abstract

Heat usage patterns, which are greatly affected by the users' behaviors, network performances, and control logic, are a crucial indicator of the effective and efficient management of district heating networks. The variations in the heat load can be daily or seasonal. The daily variations are primarily influenced by the customers' social behaviors, whereas the seasonal variations are mainly caused by the large temperature differences between the seasons over the year. Irregular heat load patterns can significantly raise costs due to pricey peak fuels and increased peak heat load capacities. The in-depth analyses of heat load profiles are regrettably quite rare and small-scale up until now. Therefore, this study offers a comprehensive investigation of a district heating network operation in order to exploit the major features of the heat usage patterns and discover the big factors that affect the heat load patterns. In addition, this study also provides detailed explanations of the features that can be considered the main drivers of the users' heat load demand. Finally, two primary daily heat usage patterns are extracted, which are exploited to efficiently train the prediction model.

摘要

热能使用模式受用户行为、网络性能和控制逻辑的影响很大,是区域供热网络有效和高效管理的关键指标。热负荷的变化可能是每日的或季节性的。每日变化主要受客户社会行为的影响,而季节性变化主要是由于一年中季节之间的温差较大所致。不规则的热负荷模式会由于昂贵的高峰燃料和增加的高峰热负荷容量而显著增加成本。不幸的是,直到现在,对热负荷曲线的深入分析还相当罕见且规模较小。因此,本研究对区域供热网络的运行进行了全面调查,以利用热能使用模式的主要特征,并发现影响热负荷模式的主要因素。此外,本研究还详细解释了可被视为用户热负荷需求主要驱动因素的特征。最后,提取了两种主要的日常热能使用模式,用于有效地训练预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ae/9163093/78135dd01b6d/41598_2022_13030_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验