Department of Information and Communication Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Republic of Korea.
Department of Artificial Intelligence, Sejong University, Seoul, Republic of Korea.
Sci Rep. 2023 May 8;13(1):7434. doi: 10.1038/s41598-023-34146-3.
Heat networks play a vital role in the energy sector by offering thermal energy to residents in certain countries. Effective management and optimization of heat networks require a deep understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design capacities of the system. However, previous work has mostly neglected the analysis of heat usage profiles or performed on a small scale. To close the gap, this study proposes a data-driven approach to analyze and predict heat load in a district heating network. The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast models using supervised machine learning (ML) algorithms, including support vector regression (SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday information, and historical hourly heat load as input variables. The performance of these algorithms is compared using different training sample sizes of the dataset. The results show that boosting algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an in-depth interpretation of the trained model and the importance of input variables.
热网通过向某些国家的居民提供热能,在能源领域发挥着重要作用。有效管理和优化热网需要深入了解用户的热能使用模式。不规则模式,如高峰使用期,可能会超过系统的设计容量。然而,之前的工作大多忽略了对热能使用情况的分析,或者规模较小。为了弥补这一差距,本研究提出了一种数据驱动的方法来分析和预测区域供热网络中的热负荷。该研究使用了来自韩国清州一座热电联产 DH 厂超过八个采暖季的数据,使用监督机器学习(ML)算法(包括支持向量回归(SVR)、提升算法和多层感知器(MLP))来构建分析和预测模型。这些模型将天气数据、假期信息和历史每小时热负荷作为输入变量。使用不同的数据集训练样本大小比较这些算法的性能。结果表明,提升算法,特别是 XGBoost,是比 SVR 和 MLP 具有更低预测误差的更合适的 ML 算法。最后,应用不同的可解释人工智能方法来深入解释训练模型和输入变量的重要性。