Peng Dandan, Zhu Guoli, Xie Zhe
The School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Sci Rep. 2025 Jul 5;15(1):24085. doi: 10.1038/s41598-025-10559-0.
Visual positioning plays a pivotal role in enabling robotic disc cutter replacement for the shield machine. However, underground operational challenges-including low illumination, high dust concentrations, and irregular sand deposition on the surface of the disc cutter and its holder-severely compromise recognition accuracy. To address this, we propose a multi-mechanism enhanced UNet model for robust segmentation of the disc cutter holder under heterogeneous surface conditions. Experimental comparisons with mainstream semantic segmentation models demonstrate that the Res-UNet achieves superior training efficiency and segmentation accuracy. Ablation studies further reveal optimal performance when utilizing a hybrid loss function (dice loss + cross-entropy loss) paired with the Adam optimizer. By integrating attention mechanisms, we develop the Res-UNet-CA architecture, which achieves state-of-the-art metrics on independent test sets: accuracy (99.45%), precision (98.9%), recall (99.11%), F1-score (99%), and mIoU (98.63%). The Res-UNet-CA model significantly outperforms other semantic segmentation models in prediction quality, offering an innovative solution for shield machine disc cutter holder detection.
视觉定位在盾构机刀盘刀具更换机器人化中起着关键作用。然而,地下作业面临诸多挑战,包括光照不足、粉尘浓度高以及刀盘刀具及其刀座表面不规则积砂等问题,严重影响识别精度。针对这一问题,我们提出一种多机制增强的UNet模型,用于在异质表面条件下对刀盘刀座进行稳健分割。与主流语义分割模型的实验比较表明,Res-UNet具有更高的训练效率和分割精度。消融研究进一步揭示,使用混合损失函数(骰子损失+交叉熵损失)与Adam优化器配对时性能最佳。通过集成注意力机制,我们开发了Res-UNet-CA架构,在独立测试集上达到了领先的指标:准确率(99.45%)、精确率(98.9%)、召回率(99.11%)、F1分数(99%)和平均交并比(98.63%)。Res-UNet-CA模型在预测质量上显著优于其他语义分割模型,为盾构机刀盘刀座检测提供了创新解决方案。