Suppr超能文献

[多期CT合成辅助的腹部器官分割]

[Multi-phase CT synthesis-assisted segmentation of abdominal organs].

作者信息

Huang P, Zhong L, Zheng K, Chen Z, Xiao R, Quan X, Yang W

机构信息

School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China.

Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2024 Jan 20;44(1):83-92. doi: 10.12122/j.issn.1673-4254.2024.01.10.

Abstract

OBJECTIVE

To propose a method for abdominal multi-organ segmentation assisted by multi-phase CT synthesis.

METHODS

Multi-phase CT synthesis for synthesizing high-quality CT images was used to increase the information details for image segmentation. A transformer block was introduced to help to capture long-range semantic information in cooperation with perceptual loss to minimize the differences between the real image and synthesized image.

RESULTS

The model was trained using multi-phase CT dataset of 526 total cases from Nanfang Hospital. The mean maximum absolute error (MAE) of the synthesized non-contrast CT, venous phase contrast- enhanced CT (CECT), and delay phase CECT images from arterial phase CECT was 19.192±3.381, 20.140±2.676 and 22.538±2.874, respectively, which were better than those of images synthesized using other methods. Validation of the multi-phase CT synthesis-assisted abdominal multi-organ segmentation method showed an average dice coefficient of 0.847 for the internal validation set and 0.823 for the external validation set.

CONCLUSION

The propose method is capable of synthesizing high-quality multi-phase CT images to effectively reduce the errors in registration between different phase CT images and improve the performance for segmentation of 13 abdominal organs.

摘要

目的

提出一种多期CT合成辅助腹部多器官分割的方法。

方法

采用多期CT合成来生成高质量的CT图像,以增加图像分割的信息细节。引入一个Transformer模块,与感知损失协作以捕捉长距离语义信息,从而最小化真实图像与合成图像之间的差异。

结果

使用南方医院526例的多期CT数据集对模型进行训练。从动脉期CT合成的非增强CT、静脉期增强CT(CECT)和延迟期CECT图像的平均最大绝对误差(MAE)分别为19.192±3.381、20.140±2.676和22.538±2.874,优于使用其他方法合成的图像。多期CT合成辅助腹部多器官分割方法的验证显示,内部验证集的平均骰子系数为0.847,外部验证集为0.823。

结论

所提出的方法能够合成高质量的多期CT图像,有效减少不同期CT图像之间的配准误差,并提高13个腹部器官的分割性能。

相似文献

1
[Multi-phase CT synthesis-assisted segmentation of abdominal organs].[多期CT合成辅助的腹部器官分割]
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Jan 20;44(1):83-92. doi: 10.12122/j.issn.1673-4254.2024.01.10.
10
MPSHT: Multiple Progressive Sampling Hybrid Model Multi-Organ Segmentation.MPSHT:多阶段混合采样模型多器官分割。
IEEE J Transl Eng Health Med. 2022 Sep 26;10:1800909. doi: 10.1109/JTEHM.2022.3210047. eCollection 2022.

本文引用的文献

2
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
6
Expanding global access to radiotherapy.扩大全球放射治疗可及性。
Lancet Oncol. 2015 Sep;16(10):1153-86. doi: 10.1016/S1470-2045(15)00222-3.
8
The use of CT in radiotherapy treatment planning.CT在放射治疗计划中的应用。
Radiother Oncol. 1983 Nov;1(2):133-41. doi: 10.1016/s0167-8140(83)80016-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验