Suppr超能文献

通过计算主动学习进行数据驱动的心磷脂选择性小分子发现。

Data-driven discovery of cardiolipin-selective small molecules by computational active learning.

作者信息

Mohr Bernadette, Shmilovich Kirill, Kleinwächter Isabel S, Schneider Dirk, Ferguson Andrew L, Bereau Tristan

机构信息

Van't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam Amsterdam 1098 XH The Netherlands

Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA

出版信息

Chem Sci. 2022 Mar 2;13(16):4498-4511. doi: 10.1039/d2sc00116k. eCollection 2022 Apr 20.

Abstract

Subtle variations in the lipid composition of mitochondrial membranes can have a profound impact on mitochondrial function. The inner mitochondrial membrane contains the phospholipid cardiolipin, which has been demonstrated to act as a biomarker for a number of diverse pathologies. Small molecule dyes capable of selectively partitioning into cardiolipin membranes enable visualization and quantification of the cardiolipin content. Here we present a data-driven approach that combines a deep learning-enabled active learning workflow with coarse-grained molecular dynamics simulations and alchemical free energy calculations to discover small organic compounds able to selectively permeate cardiolipin-containing membranes. By employing transferable coarse-grained models we efficiently navigate the all-atom design space corresponding to small organic molecules with molecular weight less than ≈500 Da. After direct simulation of only 0.42% of our coarse-grained search space we identify molecules with considerably increased levels of cardiolipin selectivity compared to a widely used cardiolipin probe 10--nonyl acridine orange. Our accumulated simulation data enables us to derive interpretable design rules linking coarse-grained structure to cardiolipin selectivity. The findings are corroborated by fluorescence anisotropy measurements of two compounds conforming to our defined design rules. Our findings highlight the potential of coarse-grained representations and multiscale modelling for materials discovery and design.

摘要

线粒体膜脂质组成的细微变化会对线粒体功能产生深远影响。线粒体内膜含有磷脂心磷脂,已被证明可作为多种不同病理状态的生物标志物。能够选择性地分配到心磷脂膜中的小分子染料可实现心磷脂含量的可视化和定量分析。在此,我们提出一种数据驱动的方法,该方法将基于深度学习的主动学习工作流程与粗粒度分子动力学模拟及炼金术自由能计算相结合,以发现能够选择性渗透含心磷脂膜的有机小分子化合物。通过采用可转移的粗粒度模型,我们有效地探索了与分子量小于约500 Da的有机小分子相对应的全原子设计空间。在仅对我们粗粒度搜索空间的0.42%进行直接模拟之后,我们鉴定出与广泛使用的心磷脂探针10-壬基吖啶橙相比,心磷脂选择性水平显著提高的分子。我们积累的模拟数据使我们能够得出将粗粒度结构与心磷脂选择性联系起来的可解释设计规则。对符合我们定义的设计规则的两种化合物进行的荧光各向异性测量证实了这些发现。我们的研究结果突出了粗粒度表示法和多尺度建模在材料发现与设计方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0d/9019913/59c05438626a/d2sc00116k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验