Suppr超能文献

利用临床记录的自然语言处理识别炎症性肠病肠外表现的存在、活动情况及状态

Identifying the Presence, Activity, and Status of Extraintestinal Manifestations of Inflammatory Bowel Disease Using Natural Language Processing of Clinical Notes.

作者信息

Stidham Ryan W, Yu Deahan, Zhao Xinyan, Bishu Shrinivas, Rice Michael, Bourque Charlie, Vydiswaran Vinod V G

机构信息

Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Inflamm Bowel Dis. 2023 Apr 3;29(4):503-510. doi: 10.1093/ibd/izac109.

Abstract

BACKGROUND

Extraintestinal manifestations (EIMs) occur commonly in inflammatory bowel disease (IBD), but population-level understanding of EIM behavior is difficult. We present a natural language processing (NLP) system designed to identify both the presence and status of EIMs using clinical notes from patients with IBD.

METHODS

In a single-center retrospective study, clinical outpatient electronic documents were collected in patients with IBD. An NLP EIM detection pipeline was designed to determine general and specific symptomatic EIM activity status descriptions using Python 3.6. Accuracy, sensitivity, and specificity, and agreement using Cohen's kappa coefficient were used to compare NLP-inferred EIM status to human documentation labels.

RESULTS

The 1240 individuals identified as having at least 1 EIM consisted of 54.4% arthritis, 17.2% ocular, and 17.0% psoriasiform EIMs. Agreement between reviewers on EIM status was very good across all EIMs (κ = 0.74; 95% confidence interval [CI], 0.70-0.78). The automated NLP pipeline determining general EIM activity status had an accuracy, sensitivity, specificity, and agreement of 94.1%, 0.92, 0.95, and κ = 0.76 (95% CI, 0.74-0.79), respectively. Comparatively, prediction of EIM status using administrative codes had a poor sensitivity, specificity, and agreement with human reviewers of 0.32, 0.83, and κ = 0.26 (95% CI, 0.20-0.32), respectively.

CONCLUSIONS

NLP methods can both detect and infer the activity status of EIMs using the medical document an information source. Though source document variation and ambiguity present challenges, NLP offers exciting possibilities for population-based research and decision support in IBD.

摘要

背景

肠外表现(EIMs)在炎症性肠病(IBD)中很常见,但对EIMs行为的人群层面的了解却很困难。我们提出了一种自然语言处理(NLP)系统,旨在利用IBD患者的临床记录来识别EIMs的存在和状态。

方法

在一项单中心回顾性研究中,收集了IBD患者的临床门诊电子文档。设计了一个NLP EIM检测管道,使用Python 3.6来确定一般和特定症状性EIM活动状态描述。使用准确性、敏感性、特异性以及使用科恩kappa系数的一致性来将NLP推断的EIM状态与人工记录标签进行比较。

结果

被确定为至少有一种EIM的1240名个体中,54.4%为关节炎,17.2%为眼部,17.0%为银屑病样EIMs。所有EIMs的评审员之间在EIM状态上的一致性非常好(κ = 0.74;95%置信区间[CI],0.70 - 0.78)。确定一般EIM活动状态的自动化NLP管道的准确性、敏感性、特异性和一致性分别为94.1%、0.92、0.95和κ = 0.76(95% CI,0.74 - 0.79)。相比之下,使用行政代码预测EIM状态的敏感性、特异性以及与人工评审员的一致性较差,分别为0.32、0.83和κ = 0.26(95% CI,0.20 - 0.32)。

结论

NLP方法可以利用医疗文档作为信息源来检测和推断EIMs的活动状态。尽管源文档的变化和模糊性带来了挑战,但NLP为IBD的基于人群的研究和决策支持提供了令人兴奋的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验