Pérez-Jeldres Tamara, Reyes-Pérez Paula, Gonzalez-Hormazabal Patricio, Avendano Cristóbal, Segovia Melero Roberto, Azocar Lorena, Silva Veronica, De La Vega Andres, Arriagada Elizabeth, Hernandez Elisa, Aguilar Nataly, Pavez-Ovalle Carolina, Hernández-Rocha Cristian, Candia Roberto, Miquel Juan Francisco, Alvarez-Lobos Manuel, Valdes Ivania, Medina-Rivera Alejandra, Bustamante Maria Leonor
Departmento de Gastroenterología, Pontificia University Católica de Chile, Santiago 8330024, Chile.
Departmento de Gastroenterología, Hospital san Borja Arriaran, Santiago 8360160, Chile.
Int J Mol Sci. 2025 Jun 15;26(12):5741. doi: 10.3390/ijms26125741.
Extraintestinal manifestations (EIMs) significantly increase morbidity in inflammatory bowel disease (IBD) patients. In this study, we examined clinical and genetic factors associated with EIMs in 414 Latin IBD patients, utilizing machine learning for predictive modeling. In our IBD group (314 ulcerative colitis (UC) and 100 Crohn's disease (CD) patients), EIM presence was assessed. Clinical differences between patients with and without EIMs were analyzed using Chi-square and Mann-Whitney U tests. Based on the genetic data of 232 patients, we identified variants linked to EIMs, and the polygenic risk score (PRS) was calculated. A machine learning approach based on logistic regression (LR), random forest (RF), and gradient boosting (GB) models was employed for predicting EIMs. EIMs were present in 29% (120/414) of patients. EIM patients were older (52 vs. 45 years, = 0.01) and were more likely to have a family history of IBD ( = 0.02) or use anti-TNF therapy ( = 0.01). EIMs were more common in patients with CD than in those with UC without reaching statistical significance ( = 0.06). Four genetic variants were associated with EIM risk (rs9936833, rs4410871, rs3132680, and rs3823417). While the PRS showed limited predictive power (AUC = 0.69), the LR, GB, and RF models demonstrated good predictive capabilities. Approximately one-third of IBD patients experienced EIMs. Significant risk factors included genetic variants, family history, age, and anti-TNF therapy, with predictive models effectively identifying EIM risk.
肠外表现(EIMs)显著增加炎症性肠病(IBD)患者的发病率。在本研究中,我们对414名拉丁裔IBD患者中与EIMs相关的临床和遗传因素进行了研究,利用机器学习进行预测建模。在我们的IBD组(314例溃疡性结肠炎(UC)患者和100例克罗恩病(CD)患者)中,评估了EIMs的存在情况。使用卡方检验和曼-惠特尼U检验分析有无EIMs患者之间的临床差异。基于232名患者的遗传数据,我们鉴定了与EIMs相关的变异,并计算了多基因风险评分(PRS)。采用基于逻辑回归(LR)、随机森林(RF)和梯度提升(GB)模型的机器学习方法来预测EIMs。29%(120/414)的患者存在EIMs。EIMs患者年龄较大(52岁对45岁,P = 0.01),更有可能有IBD家族史(P = 0.02)或使用抗TNF治疗(P = 0.01)。EIMs在CD患者中比在UC患者中更常见,但未达到统计学意义(P = 0.06)。四个遗传变异与EIM风险相关(rs9936833、rs4410871、rs3132680和rs3823417)。虽然PRS显示出有限的预测能力(曲线下面积 = 0.69),但LR、GB和RF模型表现出良好的预测能力。大约三分之一的IBD患者经历了EIMs。显著的风险因素包括遗传变异、家族史、年龄和抗TNF治疗,预测模型能够有效地识别EIM风险。