Suppr超能文献

预测入侵性白芒果蚧(Aulacaspis tubercularis; Newstead, 1906)(半翅目:盾蚧科)的栖息地适宜性,使用生物气候变量。

Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.

机构信息

International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.

Department of Crop Protection, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan.

出版信息

Pest Manag Sci. 2022 Oct;78(10):4114-4126. doi: 10.1002/ps.7030. Epub 2022 Jun 23.

Abstract

BACKGROUND

The white mango scale, Aulacaspis tubercularis (Hemiptera: Diaspididae), is an invasive pest that threatens the production of several crops of commercial value including mango. Though it is an important pest, little is known about its biology and ecology. Specifically, information on habitat suitability of A. tubercularis occurrence and potential distribution under climate change is largely unknown. In this study, we used four ecological niche models, namely maximum entropy, random forest, generalized additive models, and classification and regression trees to predict the habitat suitability of A. tubercularis under current and future [representative concentration pathways (RCPs): RCP4.5 and RCP8.5 of the year 2070] climatic scenarios, using bioclimatic variables. Models' performance was evaluated using the true skill statistic (TSS), the area under the curve (AUC), correlation (COR), and the deviance.

RESULTS

All models sufficiently predicted the occurrence of A. tubercularis with high accuracy (AUC ≥ 0.93, TSS ≥ 0.81 and COR ≥ 0.77). The random forest algorithm had the highest accuracy among the four models (AUC = 0.99, TSS = 0.93, COR = 0.90, deviance = 0.26). Temperature seasonality (Bio4), mean temperature of the driest quarter (Bio9), and precipitation seasonality (Bio15) were the most important variables influencing A. tubercularis occurrence. Models' predictions showed that countries in east, south, and west Africa are highly suitable for A. tubercularis establishment under current conditions. Similarly, Mexico, Brazil, India, Myanmar, Bangladesh, Thailand, Laos, Vietnam, and Cambodia are also highly suitable for the pest to thrive. Under future conditions, the suitable areas might slightly decrease in many countries of sub-Saharan Africa under both RCPs. However, the range of expansion of A. tubercularis is projected to be higher in Australia, Brazil, Spain, Italy, and Portugal under the future climatic scenarios.

CONCLUSION

The results reported here will be useful for guiding decision-making, developing an effective management strategy, and serving as an early warning tool to prevent further spread toward new areas. © 2022 Society of Chemical Industry.

摘要

背景

白芒果蚧(Aulacaspis tubercularis)(半翅目:盾蚧科)是一种入侵性害虫,对包括芒果在内的几种具有商业价值的作物的生产构成威胁。尽管它是一种重要的害虫,但人们对其生物学和生态学知之甚少。具体来说,关于白芒果蚧发生的栖息地适宜性及其在气候变化下的潜在分布的信息在很大程度上是未知的。在这项研究中,我们使用了四个生态位模型,即最大熵、随机森林、广义加性模型和分类回归树,使用生物气候变量来预测白芒果蚧在当前和未来(代表性浓度途径(RCP):2070 年的 RCP4.5 和 RCP8.5)气候情景下的栖息地适宜性。通过真技能统计(TSS)、曲线下面积(AUC)、相关性(COR)和偏差来评估模型的性能。

结果

所有模型都能很好地预测白芒果蚧的发生,具有很高的准确性(AUC≥0.93,TSS≥0.81,COR≥0.77)。随机森林算法在这四个模型中具有最高的准确性(AUC=0.99,TSS=0.93,COR=0.90,偏差=0.26)。温度季节性(Bio4)、最干燥季度的平均温度(Bio9)和降水季节性(Bio15)是影响白芒果蚧发生的最重要变量。模型预测表明,在当前条件下,东非、南非和西非的国家对白芒果蚧的建立非常适宜。同样,墨西哥、巴西、印度、缅甸、孟加拉国、泰国、老挝、越南和柬埔寨也非常适合该害虫的生长。在未来的条件下,在 RCP 下,许多撒哈拉以南非洲国家的适宜地区可能会略有减少。然而,根据未来的气候情景,白芒果蚧的扩张范围预计将在澳大利亚、巴西、西班牙、意大利和葡萄牙等地更高。

结论

这里报告的结果将有助于指导决策、制定有效的管理策略,并作为预防其向新地区进一步扩散的早期预警工具。© 2022 化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验