Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, United States of America.
KTH Royal Institute of Technology, Stockholm, Sweden.
PLoS Comput Biol. 2022 Jun 3;18(6):e1010165. doi: 10.1371/journal.pcbi.1010165. eCollection 2022 Jun.
We introduce a Stochastic Reaction-Diffusion-Dynamics Model (SRDDM) for simulations of cellular mechanochemical processes with high spatial and temporal resolution. The SRDDM is mapped into the CellDynaMo package, which couples the spatially inhomogeneous reaction-diffusion master equation to account for biochemical reactions and molecular transport within the Langevin Dynamics (LD) framework to describe dynamic mechanical processes. This computational infrastructure allows the simulation of hours of molecular machine dynamics in reasonable wall-clock time. We apply SRDDM to test performance of the Search-and-Capture of mitotic spindle assembly by simulating, in three spatial dimensions, dynamic instability of elastic microtubules anchored in two centrosomes, movement and deformations of geometrically realistic centromeres with flexible kinetochores and chromosome arms. Furthermore, the SRDDM describes the mechanics and kinetics of Ndc80 linkers mediating transient attachments of microtubules to the chromosomal kinetochores. The rates of these attachments and detachments depend upon phosphorylation states of the Ndc80 linkers, which are regulated in the model by explicitly accounting for the reactions of Aurora A and B kinase enzymes undergoing restricted diffusion. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of the chromosome connections, that adding chromosome arms to kinetochores improve the accuracy by slowing down chromosome movements, that Aurora A and kinetochore deformations have a small positive effect on the attachment accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy of spindle assembly.
我们引入了随机反应扩散动力学模型 (SRDDM),用于模拟具有高时空分辨率的细胞机械化学过程。SRDDM 被映射到 CellDynaMo 包中,该包将空间不均匀的反应扩散主方程耦合起来,以考虑生化反应和分子运输,同时在朗之万动力学 (LD) 框架内描述动态力学过程。这种计算基础设施允许在合理的时钟时间内模拟数小时的分子机器动力学。我们应用 SRDDM 通过模拟弹性微管在两个中心体中锚定的动态不稳定性、具有柔性动粒的几何真实中心体的运动和变形以及染色体臂的染色体动粒来测试有丝分裂纺锤体组装的搜索和捕获的性能。此外,SRDDM 描述了介导微管与染色体动粒之间瞬时连接的 Ndc80 接头的力学和动力学。这些连接和脱离的速率取决于 Ndc80 接头的磷酸化状态,在模型中通过明确考虑经历受限扩散的 Aurora A 和 B 激酶酶的反应来进行调节。我们发现,微管-动粒脱离的最佳速率可以最大限度地提高染色体连接的准确性,向动粒添加染色体臂可以通过减缓染色体运动来提高准确性,Aurora A 和动粒变形对连接精度有很小的积极影响,微管的热波动会增加动粒捕获的速率,并提高纺锤体组装的准确性。