School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2116462119. doi: 10.1073/pnas.2116462119. Epub 2022 Jun 3.
Helicases are multifunctional motor proteins with the primary task of separating nucleic acid duplexes. These enzymes often exist in distinct oligomeric forms and play essential roles during nucleic acid metabolism. Whether there is a correlation between their oligomeric state and cellular function, and how helicases effectively perform functional switching remains enigmatic. Here, we address these questions using a combined single-molecule approach and Bloom syndrome helicase (BLM). By examining the head-on collision of two BLM-mediated DNA unwinding forks, we find that two groups of BLM, upon fork convergence, promptly oligomerize across the fork junctions and tightly bridge two independent single-stranded (ss) DNA molecules that were newly generated by the unwinding BLMs. This protein oligomerization is mediated by the helicase and RNase D C-terminal (HRDC) domain of BLM and can sustain a disruptive force of up to 300 pN. Strikingly, onsite BLM oligomerization gives rise to an immediate transition of their helicase activities, from unwinding dsDNA to translocating along ssDNA at exceedingly fast rates, thus allowing for the efficient displacement of ssDNA-binding proteins, such as RPA and RAD51. These findings uncover an activity transition pathway for helicases and help to explain how BLM plays both pro- and anti-recombination roles in the maintenance of genome stability.
解旋酶是具有将核酸双链体分离这一首要任务的多功能马达蛋白。这些酶通常以不同的寡聚形式存在,并在核酸代谢过程中发挥着重要作用。它们的寡聚状态与细胞功能之间是否存在关联,以及解旋酶如何有效地进行功能转换,这些仍然是个谜。在这里,我们使用结合的单分子方法和布鲁姆综合征解旋酶(BLM)来解决这些问题。通过检查两个 BLM 介导的 DNA 解旋叉头对头的碰撞,我们发现当两个 BLM 解旋叉在分叉点汇聚时,BLM 会迅速在分叉点之间形成寡聚体,并紧密连接两条由 BLM 解旋新生成的独立单链 DNA(ssDNA)分子。这种蛋白质寡聚作用是由 BLM 的解旋酶和核糖核酸酶 D C 末端(HRDC)结构域介导的,可以承受高达 300 pN 的破坏力。引人注目的是,BLM 的原位寡聚化会导致其解旋酶活性立即发生转变,从双链 DNA 解旋转变为沿 ssDNA 快速迁移,从而可以有效地置换 ssDNA 结合蛋白,如 RPA 和 RAD51。这些发现揭示了一种解旋酶的活性转换途径,并有助于解释 BLM 如何在维持基因组稳定性方面发挥促进和抑制重组的作用。