Suppr超能文献

传播动力学模型与2019冠状病毒病疫情:应用与挑战

Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges.

作者信息

Guan Jinxing, Zhao Yang, Wei Yongyue, Shen Sipeng, You Dongfang, Zhang Ruyang, Lange Theis, Chen Feng

机构信息

Departments of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.

China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Med Rev (2021). 2022 Feb 28;2(1):89-109. doi: 10.1515/mr-2021-0022. eCollection 2022 Feb 1.

Abstract

Since late 2019, the beginning of coronavirus disease 2019 (COVID-19) pandemic, transmission dynamics models have achieved great development and were widely used in predicting and policy making. Here, we provided an introduction to the history of disease transmission, summarized transmission dynamics models into three main types: compartment extension, parameter extension and population-stratified extension models, highlight the key contribution of transmission dynamics models in COVID-19 pandemic: estimating epidemiological parameters, predicting the future trend, evaluating the effectiveness of control measures and exploring different possibilities/scenarios. Finally, we pointed out the limitations and challenges lie ahead of transmission dynamics models.

摘要

自2019年末新型冠状病毒肺炎(COVID-19)大流行开始以来,传播动力学模型取得了长足发展,并广泛应用于预测和决策制定。在此,我们介绍了疾病传播的历史,将传播动力学模型归纳为三种主要类型: compartments扩展、参数扩展和人群分层扩展模型,强调了传播动力学模型在COVID-19大流行中的关键贡献:估计流行病学参数、预测未来趋势、评估控制措施的有效性以及探索不同的可能性/情景。最后,我们指出了传播动力学模型面临的局限性和挑战。 (注:原文中“compartments”可能有误,也许是“compartment”之类的词,但不影响整体理解和翻译)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验