Suppr超能文献

人类流动性的变化及其对台湾未来 COVID-19 爆发风险的影响。

Variation in human mobility and its impact on the risk of future COVID-19 outbreaks in Taiwan.

机构信息

Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.

Department of Epidemiology & the Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

BMC Public Health. 2021 Jan 27;21(1):226. doi: 10.1186/s12889-021-10260-7.

Abstract

BACKGROUND

As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases.

METHODS

In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan.

RESULTS

We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact.

CONCLUSIONS

To prepare for the potential spread within Taiwan, we utilized Facebook's aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.

摘要

背景

随着 COVID-19 在全球范围内的持续传播,了解人类流动和连通性模式如何影响疫情动态,尤其是在疫情在当地爆发之前,对于指导应对工作至关重要。在台湾,迄今为止大多数病例是输入性的或与输入性病例有关。

方法

我们与 Facebook Data for Good 合作,描述了自 2020 年 2 月以来台湾移动模式的变化,并建立了包含人类移动数据的元种群模型,以确定疾病传播的高风险地区,并评估台湾局部旅行限制的潜在影响。

结果

我们发现,台湾当地病例数量的增加与流动性的变化有关。对于每个城市,我们确定了最具连通性的区域,这些区域可能是疫情爆发期间输入病例的来源。我们表明,如果疫情最初发生在节假日期间,台湾爆发疫情的风险将会增加。与减少城际旅行相比,减少市内旅行对疫情爆发的风险影响更大,而减少城际旅行可以缩小疫情爆发的范围,并有助于集中资源。旅行减少的时间、持续时间和水平共同决定了旅行减少对感染人数的影响,而这些因素的多种组合可以产生相似的影响。

结论

为了应对台湾境内疫情的潜在传播,我们利用 Facebook 的聚合和匿名移动及共同位置数据,确定了感染风险较高的城市和区域输入。我们开发了一个交互式应用程序,允许用户改变输入和假设,并展示疾病的空间传播以及在不同初始条件下减少城际和市内旅行的影响。如果台湾放松边境管制后出现本地传播,我们的研究结果可以直接用于提供有关未来疾病监测和旅行限制政策的重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692d/7839301/cf86583c3916/12889_2021_10260_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验