Suppr超能文献

基于机器学习的模型对预测多发肺结节中实性结节恶性程度的诊断价值

[The diagnostic value of machine-learning-based model for predicting the malignancy of solid nodules in multiple pulmonary nodules].

作者信息

Zhang K, Wei Z H, Wang X, Chen K Z

机构信息

Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.

出版信息

Zhonghua Wai Ke Za Zhi. 2022 Jun 1;60(6):573-579. doi: 10.3760/cma.j.cn112139-20211101-00511.

Abstract

To examine the efficiacy of a machine learning diagnostic model specifically for solid nodules in multiple pulmonary nodules constructed by combining patient clinical information and CT features. Totally 446 solid nodules resected from 287 patients with multiple pulmonary nodules in Department of Thoracic Surgery, Peking University People's Hospital from January 2010 to December 2018 were included. There were 117 males and 170 females, aging (61.4±9.9) yeras (range: 33 to 84 years). The nodules were randomly divided into training set (228 patients with 357 nodules) and test set (59 patients with 89 nodules) by a ratio of 4∶1. The extreme gradient boosting (XGBoost) algorithm was used to generate a predictive model (PKU-ML model) on the training set. The accuracy was verified on the test set and compared with previous published models. Finally, an independent single solid nodule set (155 patients, 95 males, aging (62.3±8.3) years (range: 37 to 77 years)) was used to evaluate the accuracy of the model for predictive value of single solid nodules. Area of receiver operating characteristic curve (AUC) was used to evaluate diagnostic values of models. In the training set, the AUC of the PKU-ML model was 0.883 (95%: 0.849 to 0.917). In the test set, the performance of the PKU-ML model (AUC=0.838, 95%: 0.754 to 0.921) was better than the models designed for single pulmonary nodules (Brock model: AUC=0.709, 95%: 0.603 to 0.816, 0.04; Mayo model: AUC=0.756, 95%: 0.656 to 0.856, 0.01; VA model: AUC=0.674, 95%: 0.561 to 0.787, 0.01), similar with PKUPH model (AUC=0.750, 95%: 0.649 to 0.851, 0.07). In the independent single solid nodules set, the PKU-ML model also achieved good performance (AUC=0.786, 95%: 0.701 to 0.872). The machine learning based PKU-ML model can better predict the malignancy of solid nodules in multiple pulmonary nodules, and also achieved a good performance in predicting the malignancy of single solid pulmonary nodules compared to mathematical models.

摘要

为了检验一种通过结合患者临床信息和CT特征构建的、专门用于多个肺结节中实性结节的机器学习诊断模型的有效性。纳入了2010年1月至2018年12月期间北京大学人民医院胸外科287例患有多个肺结节的患者切除的446个实性结节。其中男性117例,女性170例,年龄(61.4±9.9)岁(范围:33至84岁)。这些结节按4∶1的比例随机分为训练集(228例患者,357个结节)和测试集(59例患者,89个结节)。采用极端梯度提升(XGBoost)算法在训练集上生成预测模型(PKU-ML模型)。在测试集上验证其准确性,并与先前发表的模型进行比较。最后,使用一个独立的单个实性结节集(155例患者,95例男性,年龄(62.3±8.3)岁(范围:37至77岁))来评估该模型对单个实性结节预测价值的准确性。采用受试者操作特征曲线(AUC)面积来评估模型的诊断价值。在训练集中,PKU-ML模型的AUC为0.883(95%:0.849至0.917)。在测试集中,PKU-ML模型的表现(AUC=0.838,95%:0.754至0.921)优于针对单个肺结节设计的模型(Brock模型:AUC=0.709,95%:0.603至0.816,P=0.04;Mayo模型:AUC=0.756,95%:0.656至0.856,P=0.01;VA模型:AUC=0.674,95%:0.561至0.787,P=0.01),与PKUPH模型相似(AUC=0.750,95%:0.649至0.851,P=0.07)。在独立的单个实性结节集中,PKU-ML模型也取得了良好的表现(AUC=0.786,95%:0.701至0.872)。基于机器学习的PKU-ML模型能够更好地预测多个肺结节中实性结节的恶性程度,并且与数学模型相比,在预测单个实性肺结节的恶性程度方面也取得了良好的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验