Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Dr., Falk Research Building, Stanford, CA, 94305, USA.
Department of Veterans Affairs, VA Palo Alto Healthcare System, Health Services Research and Development, Palo Alto, USA.
BMC Med Inform Decis Mak. 2022 Jun 3;22(1):148. doi: 10.1186/s12911-022-01863-0.
We aim to develop and test performance of a semi-automated method (computerized query combined with manual review) for chart abstraction in the identification and characterization of surveillance radiology imaging for post-treatment non-small cell lung cancer patients.
A gold standard dataset consisting of 3011 radiology reports from 361 lung cancer patients treated at the Veterans Health Administration from 2008 to 2016 was manually created by an abstractor coding image type, image indication, and image findings. Computerized queries using a text search tool were performed to code reports. The primary endpoint of query performance was evaluated by sensitivity, positive predictive value (PPV), and F1 score. The secondary endpoint of efficiency compared semi-automated abstraction time to manual abstraction time using a separate dataset and the Wilcoxon rank-sum test.
Query for image type demonstrated the highest sensitivity of 85%, PPV 95%, and F1 score 0.90. Query for image indication demonstrated sensitivity 72%, PPV 70%, and F1 score 0.71. The image findings queries ranged from sensitivity 75-85%, PPV 23-25%, and F1 score 0.36-0.37. Semi-automated abstraction with our best performing query (image type) improved abstraction times by 68% per patient compared to manual abstraction alone (from median 21.5 min (interquartile range 16.0) to 6.9 min (interquartile range 9.5), p < 0.005).
Semi-automated abstraction using the best performing query of image type improved abstraction efficiency while preserving data accuracy. The computerized query acts as a pre-processing tool for manual abstraction by restricting effort to relevant images. Determining image indication and findings requires the addition of manual review for a semi-automatic abstraction approach in order to ensure data accuracy.
我们旨在开发和测试一种半自动方法(计算机查询与手动审查相结合),用于识别和描述治疗后非小细胞肺癌患者的监测放射影像学,以进行图表摘要。
由一名摘要员通过对图像类型、图像指示和图像发现进行编码,创建了一个包含 2008 年至 2016 年期间在退伍军人事务部治疗的 361 名肺癌患者的 3011 份放射学报告的金标准数据集。使用文本搜索工具执行计算机查询以对报告进行编码。查询性能的主要终点通过敏感性、阳性预测值(PPV)和 F1 评分进行评估。使用独立数据集和 Wilcoxon 秩和检验比较半自动提取时间与手动提取时间的效率,这是次要终点。
图像类型查询的敏感性最高,为 85%,PPV 为 95%,F1 评分为 0.90。图像指示查询的敏感性为 72%,PPV 为 70%,F1 评分为 0.71。图像发现查询的敏感性范围为 75-85%,PPV 为 23-25%,F1 评分为 0.36-0.37。与单独的手动提取相比,使用性能最佳的查询(图像类型)进行半自动提取可使每位患者的提取时间提高 68%(中位数 21.5 分钟(四分位距 16.0)至 6.9 分钟(四分位距 9.5),p<0.005)。
使用最佳性能的图像类型查询进行半自动提取可提高提取效率,同时保持数据准确性。计算机查询作为手动提取的预处理工具,通过将精力限制在相关图像上,提高了工作效率。为了确保数据准确性,半自动提取方法需要添加手动审查来确定图像指示和发现。