Department of Radiology, NYU Langone Health, New York, New York; Department of Population Health, NYU Langone Health, New York, New York.
Department of Population Health, NYU Langone Health, New York, New York.
J Am Coll Radiol. 2019 Nov;16(11):1587-1594. doi: 10.1016/j.jacr.2019.04.026. Epub 2019 May 24.
To develop natural language processing (NLP) to identify incidental lung nodules (ILNs) in radiology reports for assessment of management recommendations.
We searched the electronic health records for patients who underwent chest CT during 2014 and 2017, before and after implementation of a department-wide dictation macro of the Fleischner Society recommendations. We randomly selected 950 unstructured chest CT reports and reviewed manually for ILNs. An NLP tool was trained and validated against the manually reviewed set, for the task of automated detection of ILNs with exclusion of previously known or definitively benign nodules. For ILNs found in the training and validation sets, we assessed whether reported management recommendations agreed with Fleischner Society guidelines. The guideline concordance of management recommendations was compared between 2014 and 2017.
The NLP tool identified ILNs with sensitivity and specificity of 91.1% and 82.2%, respectively, in the validation set. Positive and negative predictive values were 59.7% and 97.0%. In reports of ILNs in the training and validation sets before versus after introduction of a Fleischner reporting macro, there was no difference in the proportion of reports with ILNs (108 of 500 [21.6%] versus 101 of 450 [22.4%]; P = .8), or in the proportion of reports with ILNs containing follow-up recommendations (75 of 108 [69.4%] versus 80 of 101 [79.2%]; P = .2]. Rates of recommendation guideline concordance were not significantly different before and after implementation of the standardized macro (52 of 75 [69.3%] versus 60 of 80 [75.0%]; P = .43).
NLP reliably automates identification of ILNs in unstructured reports, pertinent to quality improvement efforts for ILN management.
开发自然语言处理(NLP)技术,以识别放射学报告中的偶然肺结节(ILN),从而评估管理建议。
我们在 2014 年和 2017 年期间,在实施 Fleischner 学会推荐的部门范围听写宏前后,搜索了接受胸部 CT 检查的患者的电子健康记录。我们随机选择了 950 份非结构化胸部 CT 报告,并进行了手动审查以确定 ILN。我们使用手动审查集对 NLP 工具进行了培训和验证,以完成自动检测 ILN 并排除先前已知或明确良性结节的任务。对于在训练和验证集中发现的 ILN,我们评估了报告的管理建议是否与 Fleischner 学会指南一致。比较了 2014 年和 2017 年之间管理建议的指南一致性。
在验证集中,NLP 工具对 ILN 的敏感性和特异性分别为 91.1%和 82.2%。阳性和阴性预测值分别为 59.7%和 97.0%。在引入 Fleischner 报告宏之前和之后,在训练和验证集中对 ILN 报告的分析中,ILN 报告的比例(500 份报告中有 108 份[21.6%]与 450 份报告中有 101 份[22.4%];P=.8)或包含随访建议的 ILN 报告的比例(108 份报告中有 75 份[69.4%]与 101 份报告中有 80 份[79.2%];P=.2)没有差异。在实施标准化宏前后,建议指南一致性的比率没有显著差异(75 项建议中有 52 项[69.3%]与 80 项建议中有 60 项[75.0%];P=.43)。
NLP 可可靠地自动识别非结构化报告中的 ILN,这对 ILN 管理的质量改进工作很重要。