Suppr超能文献

利用半自动机器学习方法加速手术部位感染提取。

Accelerating Surgical Site Infection Abstraction With a Semi-automated Machine-learning Approach.

机构信息

Department of Surgery, University of Minnesota, Minneapolis, Minnesota.

lnstitute for Health Informatics, University of Minnesota, Minneapolis, Minnesota.

出版信息

Ann Surg. 2022 Jul 1;276(1):180-185. doi: 10.1097/SLA.0000000000004354. Epub 2020 Oct 14.

Abstract

OBJECTIVE

To demonstrate that a semi-automated approach to health data abstraction provides significant efficiencies and high accuracy.

BACKGROUND

Surgical outcome abstraction remains laborious and a barrier to the sustainment of quality improvement registries like ACS-NSQIP. A supervised machine learning algorithm developed for detecting SSi using structured and unstructured electronic health record data was tested to perform semi-automated SSI abstraction.

METHODS

A Lasso-penalized logistic regression model with 2011-3 data was trained (baseline performance measured with 10-fold cross-validation). A cutoff probability score from the training data was established, dividing the subsequent evaluation dataset into "negative" and "possible" SSI groups, with manual data abstraction only performed on the "possible" group. We evaluated performance on data from 2014, 2015, and both years.

RESULTS

Overall, 6188 patients were in the 2011-3 training dataset and 5132 patients in the 2014-5 evaluation dataset. With use of the semi-automated approach, applying the cut-off score decreased the amount of manual abstraction by >90%, resulting in < 1% false negatives in the "negative" group and a sensitivity of 82%. A blinded review of 10% of the "possible" group, considering only the features selected by the algorithm, resulted in high agreement with the gold standard based on full chart abstraction, pointing towards additional efficiency in the abstraction process by making it possible for abstractors to review limited, salient portions of the chart.

CONCLUSION

Semi-automated machine learning-aided SSI abstraction greatly accelerates the abstraction process and achieves very good performance. This could be translated to other post-operative outcomes and reduce cost barriers for wider ACS-NSQIP adoption.

摘要

目的

证明半自动化健康数据提取方法可显著提高效率和准确性。

背景

外科手术结果提取仍然很繁琐,这是像 ACS-NSQIP 这样的质量改进登记处持续存在的障碍。使用针对使用结构化和非结构化电子健康记录数据检测手术部位感染(SSI)的监督机器学习算法来测试执行半自动化 SSI 提取。

方法

使用 2011-3 年的数据训练了一个带有 Lasso 惩罚的逻辑回归模型(通过 10 折交叉验证测量基线性能)。从训练数据中确定一个概率评分截断值,将随后的评估数据集分为“阴性”和“可能”的 SSI 组,仅对“可能”组进行手动数据提取。我们评估了 2014 年、2015 年和两年的数据的性能。

结果

总体而言,2011-3 年的训练数据集中有 6188 例患者,2014-5 年的评估数据集中有 5132 例患者。使用半自动方法,应用截断值将手动提取量减少了>90%,从而使“阴性”组的假阴性率<1%,灵敏度为 82%。对 10%的“可能”组进行了盲法评估,仅考虑算法选择的特征,与基于完整图表提取的金标准高度一致,这表明通过使图表审阅者可以审阅有限的、重要的图表部分,提取过程的效率可以进一步提高。

结论

半自动化机器学习辅助 SSI 提取大大加快了提取过程,并取得了非常好的性能。这可以转化为其他术后结果,并降低更广泛采用 ACS-NSQIP 的成本障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验