Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark. Electronic address: https://twitter.com/KristineDegn.
Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark; Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark. Electronic address: https://twitter.com/LudoBeltrame.
J Mol Biol. 2022 Sep 15;434(17):167663. doi: 10.1016/j.jmb.2022.167663. Epub 2022 May 31.
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
肿瘤蛋白 53(p53)参与转录依赖和独立的过程。已经发现几种与癌症相关的 p53 变体影响蛋白质稳定性。相反,其他变体可能对结构稳定性影响不大,并对 p53 互作组具有局部或远程影响。我们的小组之前在 p53 的 DNA 结合域(DBD)中鉴定了一个环(残基 207-213),可以募集不同的相互作用蛋白。p53 与其他蛋白质复合物的实验结构增强了该界面对于蛋白质-蛋白质相互作用的重要性。我们在这里使用基于结构的方法来研究体细胞和种系变体 p53,这些变体在稳定性方面可能只有微小的影响,并在局部或变构作用于 207-213 区域,从而影响该蛋白质的细胞质功能。为此,我们使用基于结构的方法研究了 p53 DBD 中的 1132 种变体,还考虑了蛋白质动力学。我们重点研究了对结构稳定性预测有微小影响的变体。然后,我们研究了这些变体对 DNA 结合、p53 DBD 二聚化以及与 207-213 区域的分子内接触的影响。此外,我们使用变构的粗粒度模型和全原子分子动力学模拟来鉴定能够长程调节 207-213 区域构象的变体。我们使用增强采样方法进一步验证了 15 种变体的预测。本研究中使用的方法可以更广泛地应用于其他 p53 变体或环区构象变化对于疾病相关蛋白质功能至关重要的情况。