Suppr超能文献

一种可解释且多功能的机器学习方法,用于卵母细胞表型分析。

An interpretable and versatile machine learning approach for oocyte phenotyping.

机构信息

Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.

Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.

出版信息

J Cell Sci. 2022 Jul 1;135(13). doi: 10.1242/jcs.260281. Epub 2022 Jul 13.

Abstract

Meiotic maturation is a crucial step of oocyte formation, allowing its potential fertilization and embryo development. Elucidating this process is important for both fundamental research and assisted reproductive technology. However, few computational tools based on non-invasive measurements are available to characterize oocyte meiotic maturation. Here, we develop a computational framework to phenotype oocytes based on images acquired in transmitted light. We trained neural networks to segment the contour of oocytes and their zona pellucida using oocytes from diverse species. We defined a comprehensive set of morphological features to describe an oocyte. These steps were implemented in an open-source Fiji plugin. We present a feature-based machine learning pipeline to recognize oocyte populations and determine morphological differences between them. We first demonstrate its potential to screen oocytes from different strains and automatically identify their morphological characteristics. Its second application is to predict and characterize the maturation potential of oocytes. We identify the texture of the zona pellucida and cytoplasmic particle size as features to assess mouse oocyte maturation potential and tested whether these features were applicable to the developmental potential of human oocytes. This article has an associated First Person interview with the first author of the paper.

摘要

减数分裂成熟是卵子形成的关键步骤,使其具有潜在的受精和胚胎发育能力。阐明这一过程对于基础研究和辅助生殖技术都很重要。然而,目前很少有基于非侵入性测量的计算工具来描述卵母细胞的减数分裂成熟。在这里,我们开发了一个基于透射光图像的卵母细胞表型计算框架。我们使用来自不同物种的卵母细胞训练神经网络来分割卵母细胞及其透明带的轮廓。我们定义了一套全面的形态特征来描述卵母细胞。这些步骤在一个开源的 Fiji 插件中实现。我们提出了一种基于特征的机器学习管道,用于识别卵母细胞群体并确定它们之间的形态差异。我们首先证明了它从不同品系筛选卵母细胞并自动识别其形态特征的潜力。它的第二个应用是预测和描述卵母细胞的成熟潜能。我们确定了透明带的纹理和细胞质颗粒大小作为评估小鼠卵母细胞成熟潜能的特征,并测试了这些特征是否适用于人类卵母细胞的发育潜能。本文附有该论文第一作者的第一人称采访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a34/9377708/02b266ab891f/joces-135-260281-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验