Suppr超能文献

机器学习和 LACE 指数在预测老年心力衰竭住院患者 30 天再入院中的应用。

Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients.

机构信息

Internal Medicine, Medical Department, Vimercate Hospital, Azienda Socio Sanitaria Territoriale (ASST) della Brianza, Via Santi Cosma e Damiano 10, 20871, Vimercate, MB, Italy.

Almaviva Digitaltec S.R.L, Naples, Italy.

出版信息

Intern Emerg Med. 2022 Sep;17(6):1727-1737. doi: 10.1007/s11739-022-02996-w. Epub 2022 Jun 4.

Abstract

Machine learning (ML) techniques may improve readmission prediction performance in heart failure (HF) patients. This study aimed to assess the ability of ML algorithms to predict unplanned all-cause 30-day readmissions in HF elderly patients, and to compare them with conventional LACE (Length of hospitalization, Acuity, Comorbidities, Emergency department visits) index. All patients aged ≥ 65 years discharged alive between 2010 and 2019 after a hospitalization for acute HF were included in this retrospective cohort study. We applied MICE (Multivariate Imputation via Chained Equations) method to obtain a balanced, fully valued dataset and LASSO (Least Absolute Shrinkage and Selection Operator) algorithm to get the most significant features. Training (80% of records) and test (20%) cohorts were randomly selected. Study population: 3079 patients, 394 (12.8%) presented at least one readmission within 30 days, and 2685 (87.2%) did not. In the test cohort AUCs (IC95%) of XGBoost, Ada Boost Classifier, Random forest, and Gradient Boosting, and LACE Index were: 0.803 (0.734-0.872), 0.782 (0.711-0.854), 0.776 (0.703-0.848), 0.786 (0.715-0.857), and 0.504 (0.414-0.594), respectively, for predicting readmissions. A SHAP analysis was performed to offer a breakdown of the ML variables associated with readmission. Positive and negative predicting values estimates of the different ML models and LACE index were also provided, for several values of readmission rate prevalence. Among elderly patients, the rate of all-cause unplanned 30-day readmissions after hospitalization due to an acute HF was high. ML models performed better than the conventional LACE index for predicting readmissions. ML models can be proposed as promising tools for the identification of subjects at high risk of hospitalization in this clinical setting, enabling care teams to target interventions for improving overall clinical outcomes.

摘要

机器学习 (ML) 技术可能会提高心力衰竭 (HF) 患者再入院预测的性能。本研究旨在评估 ML 算法预测 HF 老年患者非计划性全因 30 天再入院的能力,并将其与传统 LACE(住院时间、严重程度、合并症、急诊科就诊)指数进行比较。所有 2010 年至 2019 年期间因急性 HF 住院后存活出院且年龄≥65 岁的患者均纳入本回顾性队列研究。我们应用 MICE(多重插补通过链接方程)方法获得平衡、完全赋值数据集,并应用 LASSO(最小绝对收缩和选择算子)算法获得最重要的特征。训练(记录的 80%)和测试(20%)队列被随机选择。研究人群:3079 例患者,394 例(12.8%)在 30 天内至少有一次再入院,2685 例(87.2%)没有。在测试队列中,XGBoost、Ada Boost 分类器、随机森林和梯度提升的 AUC(95%CI)和 LACE 指数分别为:0.803(0.734-0.872)、0.782(0.711-0.854)、0.776(0.703-0.848)、0.786(0.715-0.857)和 0.504(0.414-0.594),用于预测再入院。还进行了 SHAP 分析,以提供与再入院相关的 ML 变量的细分。还提供了不同 ML 模型和 LACE 指数的阳性和阴性预测值估计,以及几个再入院率的患病率值。在老年患者中,因急性 HF 住院后全因非计划性 30 天再入院的发生率很高。ML 模型在预测再入院方面优于传统的 LACE 指数。ML 模型可以作为在这种临床环境中识别住院高风险患者的有前途的工具,使护理团队能够针对改善整体临床结果的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验