Mahajan Satish M, Mahajan Amey S, King Robert, Negahban Sahand
Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
Stud Health Technol Inform. 2018;250:250-255.
Decades-long research efforts have shown that Heart Failure (HF) is the most expensive diagnosis for hospitalizations and the most frequent diagnosis for 30-day readmissions. If risk stratification for readmission of HF patients could be carried out at the time of discharge from the index hospitalization, corresponding appropriate post-discharge interventions could be arranged to avoid potential readmission. We, therefore, sought to explore and compare two newer machine learning methods of risk prediction using 56 predictors from electronic health records data of 1778 unique HF patients from 31 hospitals across the United States. We used two approaches boosted trees and spike-and-slab regression for analysis and found that boosted trees provided better predictive results (AUC: 0.719) as compared to spike-and-slab regression (AUC: 0.621) in our dataset.
长达数十年的研究表明,心力衰竭(HF)是住院费用最高的诊断,也是30天再入院最常见的诊断。如果能在首次住院出院时对HF患者进行再入院风险分层,就可以安排相应的出院后适当干预措施,以避免潜在的再入院。因此,我们试图探索和比较两种更新的机器学习风险预测方法,使用来自美国31家医院1778名独特HF患者的电子健康记录数据中的56个预测因子。我们采用两种方法,即增强树和尖峰平板回归进行分析,发现在我们的数据集中,与尖峰平板回归(AUC:0.621)相比,增强树提供了更好的预测结果(AUC:0.719)。