Suppr超能文献

通过计算方法针对裂谷热病毒的多个关键蛋白来发现其天然泛抑制剂。

Discovery of Rift Valley fever virus natural pan-inhibitors by targeting its multiple key proteins through computational approaches.

机构信息

Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.

Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan.

出版信息

Sci Rep. 2022 Jun 3;12(1):9260. doi: 10.1038/s41598-022-13267-1.

Abstract

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus and pathogenic to both humans and animals. Currently, no proven effective RVFV drugs or licensed vaccine are available for human or animal use. Hence, there is an urgent need to develop effective treatment options to control this viral infection. RVFV glycoprotein N (GN), glycoprotein C (GC), and nucleocapsid (N) proteins are attractive antiviral drug targets due to their critical roles in RVFV replication. In present study, an integrated docking-based virtual screening of more than 6000 phytochemicals with known antiviral activities against these conserved RVFV proteins was conducted. The top five hit compounds, calyxin C, calyxin D, calyxin J, gericudranins A, and blepharocalyxin C displayed optimal binding against all three target proteins. Moreover, multiple parameters from the molecular dynamics (MD) simulations and MM/GBSA analysis confirmed the stability of protein-ligand complexes and revealed that these compounds may act as potential pan-inhibitors of RVFV replication. Our computational analyses may contribute toward the development of promising effective drugs against RVFV infection.

摘要

裂谷热病毒(RVFV)是一种人畜共患的虫媒病毒,对人类和动物均具有致病性。目前,尚无针对人类或动物使用的经证实有效的 RVFV 药物或许可疫苗。因此,迫切需要开发有效的治疗方法来控制这种病毒感染。RVFV 糖蛋白 N(GN)、糖蛋白 C(GC)和核衣壳(N)蛋白因其在 RVFV 复制过程中的关键作用,是有吸引力的抗病毒药物靶点。在本研究中,对超过 6000 种具有已知抗病毒活性的植物化学物质进行了基于整合对接的虚拟筛选,以对抗这些保守的 RVFV 蛋白。排名前五的命中化合物包括:三叶豆紫檀素 C、三叶豆紫檀素 D、三叶豆紫檀素 J、gericudranins A 和 blepharocalyxin C,它们对所有三种靶蛋白均显示出最佳的结合能力。此外,来自分子动力学(MD)模拟和 MM/GBSA 分析的多个参数证实了蛋白-配体复合物的稳定性,并表明这些化合物可能作为 RVFV 复制的潜在泛抑制剂发挥作用。我们的计算分析可能有助于开发针对 RVFV 感染的有效药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7287/9166719/96209705ae3a/41598_2022_13267_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验