Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et Recherche Médicale, Paris, France; Département d'Études Cognitives, Ecole Normale Supérieure, Paris, France; Université de Recherche Paris Sciences et Lettres, Paris, France.
Paris School of Economics, Paris, France; LabNIC, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Science, Geneva, Switzerland.
Trends Cogn Sci. 2022 Jul;26(7):607-621. doi: 10.1016/j.tics.2022.04.005. Epub 2022 May 31.
Humans do not integrate new information objectively: outcomes carrying a positive affective value and evidence confirming one's own prior belief are overweighed. Until recently, theoretical and empirical accounts of the positivity and confirmation biases assumed them to be specific to 'high-level' belief updates. We present evidence against this account. Learning rates in reinforcement learning (RL) tasks, estimated across different contexts and species, generally present the same characteristic asymmetry, suggesting that belief and value updating processes share key computational principles and distortions. This bias generates over-optimistic expectations about the probability of making the right choices and, consequently, generates over-optimistic reward expectations. We discuss the normative and neurobiological roots of these RL biases and their position within the greater picture of behavioral decision-making theories.
带有积极情感价值的结果和证实自身先前信念的证据会被过度重视。直到最近,关于正性偏差和确认偏差的理论和实证研究都假设它们是特定于“高级”信念更新的。我们提供了与这一观点相矛盾的证据。强化学习 (RL) 任务中的学习率在不同的情境和物种中进行估计,通常呈现出相同的特征性不对称性,这表明信念和价值更新过程共享关键的计算原则和扭曲。这种偏差会导致对正确选择的概率产生过于乐观的预期,从而导致对奖励的过高预期。我们讨论了这些 RL 偏差的规范和神经生物学根源,以及它们在更广泛的行为决策理论中的地位。