Suppr超能文献

在多维奖励环境中注意力对学习的贡献。

Contributions of Attention to Learning in Multidimensional Reward Environments.

作者信息

Wang Michael Chong, Soltani Alireza

机构信息

Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire.

Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire

出版信息

J Neurosci. 2025 Feb 12;45(7):e2300232024. doi: 10.1523/JNEUROSCI.2300-23.2024.

Abstract

Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision-making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes but also to find parsimonious representations of the reward contingencies for more efficient learning.

摘要

现实世界中的选择选项具有许多特征或属性,而这些选项的奖励结果仅取决于少数特征或属性。研究表明,人类会学习并将基于特征的学习与更复杂的基于联合的学习相结合,以应对自然奖励环境中的学习挑战。然而,目前尚不清楚不同的学习策略如何相互作用,以确定应该关注哪些特征或联合,并控制选择行为,以及随后的注意力调节如何影响未来的学习和选择。为了解决这些问题,我们在一项三维学习任务中考察了男性和女性人类参与者的行为,在该任务中,不同刺激的奖励结果可以根据一个信息性特征和联合的组合来预测。使用多种方法,我们发现参与者的选择行为和估计的奖励概率最准确地由注意力调节模型描述,这些模型学习了信息性特征和信息性联合的预测值。具体而言,在最适合选择数据的强化学习模型中,注意力由综合特征和联合值的差异控制。由此产生的注意力权重通过提高对被关注特征和联合的学习率来调节学习。至关重要的是,通过注意力权重调节决策并没有改善数据拟合,几乎没有证据表明注意力对选择有直接影响。这些结果表明,在多维环境中,人类不仅将注意力引导到选择性地处理奖励预测属性上,还引导到寻找奖励偶然性的简约表示,以便更有效地学习。

相似文献

4

本文引用的文献

4
Human Representation Learning.人类表示学习。
Annu Rev Neurosci. 2021 Jul 8;44:253-273. doi: 10.1146/annurev-neuro-092920-120559. Epub 2021 Mar 17.
6
Separable Influences of Reward on Visual Processing and Choice.奖励对视觉处理和选择的可分离影响。
J Cogn Neurosci. 2021 Feb;33(2):248-262. doi: 10.1162/jocn_a_01647. Epub 2020 Nov 9.
7
The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex.《海马体和前额叶皮质中的抽象几何》
Cell. 2020 Nov 12;183(4):954-967.e21. doi: 10.1016/j.cell.2020.09.031. Epub 2020 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验