Singla Rajiv, Aggarwal Shivam, Bindra Jatin, Garg Arpan, Singla Ankush
Department of Endocrinology and Health Informatics, Kalpavriksh Healthcare, Dwarka, Delhi, India.
Department of Health Informatics, Kalpavriksh Healthcare, Dwarka, Delhi, India.
Indian J Endocrinol Metab. 2022 Jan-Feb;26(1):44-49. doi: 10.4103/ijem.ijem_435_21. Epub 2022 Apr 27.
Application of artificial intelligence/machine learning (AI/ML) for automation of diabetes management can enhance equitable access to care and ensure delivery of minimum standards of care. Objective of the current study was to create a clinical decision support system using machine learning approach for diabetes drug management in people living with Type 2 diabetes.
Study was conducted at an Endocrinology clinic and data collected from the electronic clinic management system. 15485 diabetes prescriptions of 4974 patients were accessed. A data subset of 1671 diabetes prescriptions of 940 patients with information on diabetes drugs, demographics (age, gender, body mass index), biochemical parameters (HbA1c, fasting blood glucose, creatinine) and patient clinical parameters (diabetes duration, compliance to diet/exercise/medications, hypoglycemia, contraindication to any drug, summary of patient self monitoring of blood glucose data, diabetes complications) was used in analysis. An input of patient variables were used to predict all diabetes drug classes to be prescribed. Random forest algorithms were used to create decision trees for all diabetes drugs.
Accuracy for predicting use of each individual drug class varied from 85% to 99.4%. Multi-drug accuracy, indicating that all drug predictions in a prescription are correct, stands at 72%. Multi drug class accuracy in clinical application may be higher than this result, as in a lot of clinical scenarios, two or more diabetes drugs may be used interchangeably. This report presents a first positive step in developing a robust clinical decision support system to transform access and quality of diabetes care.
应用人工智能/机器学习(AI/ML)实现糖尿病管理自动化,可提高医疗服务的公平可及性,并确保提供最低标准的医疗服务。本研究的目的是使用机器学习方法创建一个临床决策支持系统,用于2型糖尿病患者的糖尿病药物管理。
研究在一家内分泌诊所进行,数据从电子诊所管理系统收集。获取了4974名患者的15485份糖尿病处方。分析使用了940名患者的1671份糖尿病处方的数据子集,这些处方包含糖尿病药物、人口统计学信息(年龄、性别、体重指数)、生化参数(糖化血红蛋白、空腹血糖、肌酐)以及患者临床参数(糖尿病病程、饮食/运动/药物治疗依从性、低血糖、任何药物的禁忌症、患者自我血糖监测数据总结、糖尿病并发症)。利用患者变量输入来预测所有拟开具的糖尿病药物类别。使用随机森林算法为所有糖尿病药物创建决策树。
预测每种药物类别的使用准确性在85%至99.4%之间。多药准确性(即处方中的所有药物预测均正确)为72%。在临床应用中,多药类别准确性可能高于此结果,因为在许多临床场景中,两种或更多种糖尿病药物可能可互换使用。本报告展示了在开发强大的临床决策支持系统以改变糖尿病护理的可及性和质量方面迈出的积极第一步。