Suppr超能文献

糖尿病护理中的人工智能/机器学习

Artificial Intelligence/Machine Learning in Diabetes Care.

作者信息

Singla Rajiv, Singla Ankush, Gupta Yashdeep, Kalra Sanjay

机构信息

Department of Endocrinology, Kalpavriksh Healthcare, Dwarka, India.

Department of Health Informatics, Kalpavriksh Healthcare, Dwarka, India.

出版信息

Indian J Endocrinol Metab. 2019 Jul-Aug;23(4):495-497. doi: 10.4103/ijem.IJEM_228_19.

Abstract

Artificial intelligence/Machine learning (AI/ML) is transforming all spheres of our life, including the healthcare system. Application of AI/ML has a potential to vastly enhance the reach of diabetes care thereby making it more efficient. The huge burden of diabetes cases in India represents a unique set of problems, and provides us with a unique opportunity in terms of potential availability of data. Harnessing this data using electronic medical records, by all physicians, can put India at the forefront of research in this area. Application of AI/ML would provide insights to our problems as well as may help us to devise tailor-made solutions for the same.

摘要

人工智能/机器学习(AI/ML)正在改变我们生活的各个领域,包括医疗保健系统。AI/ML的应用有可能极大地扩大糖尿病护理的覆盖范围,从而提高其效率。印度糖尿病病例的巨大负担代表了一系列独特的问题,并在数据潜在可用性方面为我们提供了一个独特的机会。所有医生利用电子病历利用这些数据,可以使印度在这一领域的研究中处于前沿。AI/ML的应用将为我们的问题提供见解,并可能帮助我们为这些问题设计量身定制的解决方案。

相似文献

1
Artificial Intelligence/Machine Learning in Diabetes Care.
Indian J Endocrinol Metab. 2019 Jul-Aug;23(4):495-497. doi: 10.4103/ijem.IJEM_228_19.
2
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
J Am Coll Radiol. 2018 Mar;15(3 Pt B):504-508. doi: 10.1016/j.jacr.2017.12.026. Epub 2018 Feb 4.
6
Artificial Intelligence Transforms the Future of Health Care.
Am J Med. 2019 Jul;132(7):795-801. doi: 10.1016/j.amjmed.2019.01.017. Epub 2019 Jan 31.
7
Artificial intelligence in oncology.
Cancer Sci. 2020 May;111(5):1452-1460. doi: 10.1111/cas.14377. Epub 2020 Mar 21.
8
Artificial Intelligence for the Otolaryngologist: A State of the Art Review.
Otolaryngol Head Neck Surg. 2019 Apr;160(4):603-611. doi: 10.1177/0194599819827507. Epub 2019 Feb 5.
9
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.
Rev Esp Cardiol (Engl Ed). 2019 Dec;72(12):1065-1075. doi: 10.1016/j.rec.2019.05.014. Epub 2019 Oct 12.
10
Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.
Artif Intell Med. 2013 Jan;57(1):9-19. doi: 10.1016/j.artmed.2012.12.003. Epub 2012 Dec 31.

引用本文的文献

1
Advancement of artificial intelligence based treatment strategy in type 2 diabetes: A critical update.
J Pharm Anal. 2025 Jun;15(6):101305. doi: 10.1016/j.jpha.2025.101305. Epub 2025 Apr 10.
2
Cost-effectiveness of the 3E model in diabetes management: a machine learning approach to assess long-term economic impact.
Front Public Health. 2025 May 23;13:1571546. doi: 10.3389/fpubh.2025.1571546. eCollection 2025.
3
Machine learning for high-risk hospitalization prediction in outpatient individuals with diabetes at a tertiary hospital.
Arch Endocrinol Metab. 2025 Apr 15;69(2):e230348. doi: 10.20945/2359-4292-2024-0317.
4
Prediction of Diabetes Using Data Mining and Machine Learning Algorithms: A Cross-Sectional Study.
Healthc Inform Res. 2024 Jan;30(1):73-82. doi: 10.4258/hir.2024.30.1.73. Epub 2024 Jan 31.
6
Diabetes and artificial intelligence beyond the closed loop: a review of the landscape, promise and challenges.
Diabetologia. 2024 Feb;67(2):223-235. doi: 10.1007/s00125-023-06038-8. Epub 2023 Nov 18.
7
The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review.
Front Public Health. 2023 Jul 4;11:1102185. doi: 10.3389/fpubh.2023.1102185. eCollection 2023.
8
The progression of secondary diabetes: A review of modeling studies.
Front Endocrinol (Lausanne). 2022 Dec 21;13:1070979. doi: 10.3389/fendo.2022.1070979. eCollection 2022.
10
Artificial intelligence perspective in the future of endocrine diseases.
J Diabetes Metab Disord. 2022 Jan 11;21(1):971-978. doi: 10.1007/s40200-021-00949-2. eCollection 2022 Jun.

本文引用的文献

5
Optimizing Hybrid Closed-Loop Therapy in Adolescents and Emerging Adults Using the MiniMed 670G System.
Diabetes Care. 2018 Apr;41(4):789-796. doi: 10.2337/dc17-1682. Epub 2018 Feb 14.
7
Machine Learning and Data Mining Methods in Diabetes Research.
Comput Struct Biotechnol J. 2017 Jan 8;15:104-116. doi: 10.1016/j.csbj.2016.12.005. eCollection 2017.
9
High burden of prediabetes and diabetes in three large cities in South Asia: The Center for cArdio-metabolic Risk Reduction in South Asia (CARRS) Study.
Diabetes Res Clin Pract. 2015 Nov;110(2):172-82. doi: 10.1016/j.diabres.2015.09.005. Epub 2015 Sep 25.
10
Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones.
J Diabetes Sci Technol. 2015 May;9(3):507-15. doi: 10.1177/1932296815580159. Epub 2015 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验