Suppr超能文献

使用原子力显微镜对纳米结构钛合金表面的纳米力学摩擦学特性进行研究:摩擦与速度的关系研究。

Nanomechanical tribological characterisation of nanostructured titanium alloy surfaces using AFM: A friction vs velocity study.

机构信息

Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia.

Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia.

出版信息

Colloids Surf B Biointerfaces. 2022 Sep;217:112600. doi: 10.1016/j.colsurfb.2022.112600. Epub 2022 May 30.

Abstract

Medical-grade titanium alloys used for orthopaedic implants are at risk from infections and complications such as wear and tear. We have recently shown that hydrothermally etched (HTE) nanostructures (NS) formed on the Ti6AlV4 alloy surfaces impart enhanced anti-bacterial activity which results in inhibited formation of bacterial biofilm. Although these titanium alloy nanostructures may resist bacterial colonisation, their frictional properties are yet to be understood. Orthopaedic devices are encapsulated by bone and muscle tissue. Contact friction between orthopaedic implant surfaces and these host tissues may trigger inflammation, osteolysis and wear. To address these challenges, we performed simulation of the contact behaviour between a smooth control Ti6Al4V alloy and HTE surfaces against a hardwearing SiO sphere using Atomic Force Microscopy (AFM) in Lateral Force Microscopy mode. The friction study was evaluated in both air and liquid environments at high (5 Hz) and low (0.5 Hz) scan velocities. Lower scan velocities demonstrated opposing friction force changes between the two mediums, with friction stabilising at higher velocities. The friction measured on the NS alloy surfaces was reduced by ~20% in air and ~80% in phosphate buffered saline, in comparison to the smooth control surface, displaying a non-linear behaviour of the force applied by the AFM tip. Changes in friction values and cantilever scan velocities on different substrates are discussed with respect to the Stribeck curve. Reduced friction on nanostructured surfaces may improve wear resistance and aid osseointegration.

摘要

用于矫形植入物的医用级钛合金存在感染和磨损等并发症的风险。我们最近表明,在 Ti6AlV4 合金表面形成的水热蚀刻 (HTE) 纳米结构 (NS) 赋予了增强的抗菌活性,从而抑制了细菌生物膜的形成。尽管这些钛合金纳米结构可能抵抗细菌定植,但它们的摩擦性能仍有待了解。矫形装置被骨骼和肌肉组织包裹。矫形植入物表面与这些宿主组织之间的接触摩擦可能引发炎症、骨溶解和磨损。为了解决这些挑战,我们使用原子力显微镜 (AFM) 在横向力显微镜模式下模拟了光滑控制 Ti6Al4V 合金和 HTE 表面与耐磨 SiO 球之间的接触行为。在高(5 Hz)和低(0.5 Hz)扫描速度下,在空气和液体环境中评估了摩擦研究。较低的扫描速度显示出两种介质之间摩擦力的相反变化,随着速度的增加摩擦力趋于稳定。与光滑控制表面相比,NS 合金表面的摩擦力在空气中降低了约 20%,在磷酸盐缓冲盐水中降低了约 80%,显示出 AFM 尖端施加的力的非线性行为。不同基底上的摩擦力值和悬臂扫描速度的变化与 Stribeck 曲线有关。在纳米结构表面上降低摩擦力可能会提高耐磨性并有助于骨整合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验