Wood Jonathan, Palms Dennis, Luu Quan Trong, Vasilev Krasimir, Bright Richard
Academic Unit of STEM, University of South Australia, Adelaide, SA 5095, Australia.
College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia.
Nanomaterials (Basel). 2025 Mar 19;15(6):462. doi: 10.3390/nano15060462.
This study investigates the simulation of interactions between cells and antibacterial nanostructured surfaces. Understanding the physical interaction forces between cells and nanostructured surfaces is crucial for developing antibacterial materials, yet existing physical models are limited. Force simulation studies can simplify analysis by focusing on mechanical interactions while disregarding factors such as bacterial deformation and complex biochemical signals. To simulate these interactions, Atomic Force Microscopy (AFM) was employed to generate force curves, allowing precise monitoring of the interaction between a 5 µm spherical cantilever tip and titanium alloy (Ti6Al4V) surfaces. AFM uniquely enables customized approaches and retraction cycles, providing detailed insights into attractive-repulsive forces across different surface morphologies. Two nanostructured surfaces, created via hydrothermal etching using KOH and NaOH, were compared to a Ti6Al4V control surface. Results demonstrated significant changes in nanomechanical properties due to surface chemistry and morphology. The Ti6Al4V control surface exhibited a 44 ± 5 N/m stiffness, which decreased to 20 ± 3 N/m on KOH-etched nanostructured (NS) surfaces and 29 ± 4 N/m on NaOH-etched NS surfaces. Additionally, surface energy decreased by magnitude on nanostructured surfaces compared to the control. The nature of interaction forces also varied: short-range forces were predominant on KOH-etched surfaces, while NaOH-etched surfaces exhibited stronger long-range forces. These findings provide valuable insights into how nanostructure patterning influences cell-like interactions, offering potential applications in antibacterial surface design. By tailoring nanomechanical properties through specific etching techniques, biomaterial performance can be optimized for clinical applications, enhancing antibacterial efficacy and reducing microbial adhesion.
本研究调查了细胞与抗菌纳米结构表面之间相互作用的模拟。了解细胞与纳米结构表面之间的物理相互作用力对于开发抗菌材料至关重要,但现有的物理模型存在局限性。力模拟研究可以通过关注机械相互作用来简化分析,而忽略细菌变形和复杂生化信号等因素。为了模拟这些相互作用,采用原子力显微镜(AFM)生成力曲线,从而能够精确监测5微米球形悬臂尖端与钛合金(Ti6Al4V)表面之间的相互作用。AFM独特地能够实现定制方法和回缩循环,提供了对不同表面形态下吸引-排斥力的详细见解。将通过使用KOH和NaOH进行水热蚀刻制备的两个纳米结构表面与Ti6Al4V对照表面进行了比较。结果表明,由于表面化学和形态的原因,纳米力学性能发生了显著变化。Ti6Al4V对照表面的刚度为44±5 N/m,在KOH蚀刻的纳米结构(NS)表面上降至20±3 N/m,在NaOH蚀刻的NS表面上降至29±4 N/m。此外,与对照相比,纳米结构表面的表面能在量级上有所降低。相互作用力的性质也有所不同:短程力在KOH蚀刻的表面上占主导,而NaOH蚀刻的表面表现出更强的长程力。这些发现为纳米结构图案化如何影响类似细胞的相互作用提供了有价值的见解,在抗菌表面设计中具有潜在应用。通过特定蚀刻技术调整纳米力学性能,可以优化生物材料的性能以用于临床应用,提高抗菌效果并减少微生物粘附。