Suppr超能文献

单细胞转录组数据中肿瘤内和肿瘤间基因簇异质性的特征分析。

Characterization of gene cluster heterogeneity in single-cell transcriptomic data within and across cancer types.

机构信息

Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan.

The University of Texas MD Anderson Cancer Center, School of Health Profession, Master Program of Diagnostic Genetics, Houston, Texas, 77030, USA.

出版信息

Biol Open. 2022 Jun 15;11(6). doi: 10.1242/bio.059256. Epub 2022 Jun 23.

Abstract

Despite the remarkable progress in probing tumor transcriptomic heterogeneity by single-cell RNA sequencing (sc-RNAseq) data, several gaps exist in prior studies. Tumor heterogeneity is frequently mentioned but not quantified. Clustering analyses typically target cells rather than genes, and differential levels of transcriptomic heterogeneity of gene clusters are not characterized. Relations between gene clusters inferred from multiple datasets remain less explored. We provided a series of quantitative methods to analyze cancer sc-RNAseq data. First, we proposed two quantitative measures to assess intra-tumoral heterogeneity/homogeneity. Second, we established a hierarchy of gene clusters from sc-RNAseq data, devised an algorithm to reduce the gene cluster hierarchy to a compact structure, and characterized the gene clusters with functional enrichment and heterogeneity. Third, we developed an algorithm to align the gene cluster hierarchies from multiple datasets to a small number of meta gene clusters. By applying these methods to nine cancer sc-RNAseq datasets, we discovered that cancer cell transcriptomes were more homogeneous within tumors than the accompanying normal cells. Furthermore, many gene clusters from the nine datasets were aligned to two large meta gene clusters, which had high and low heterogeneity and were enriched with distinct functions. Finally, we found the homogeneous meta gene cluster retained stronger expression coherence and associations with survival times in bulk level RNAseq data than the heterogeneous meta gene cluster, yet the combinatorial expression patterns of breast cancer subtypes in bulk level data were not preserved in single-cell data. The inference outcomes derived from nine cancer sc-RNAseq datasets provide insights about the contributing factors for transcriptomic heterogeneity of cancer cells and complex relations between bulk level and single-cell RNAseq data. They demonstrate the utility of our methods to enable a comprehensive characterization of co-expressed gene clusters in a wide range of sc-RNAseq data in cancers and beyond.

摘要

尽管单细胞 RNA 测序 (sc-RNAseq) 数据在探测肿瘤转录组异质性方面取得了显著进展,但先前的研究仍存在一些空白。肿瘤异质性经常被提及,但没有被量化。聚类分析通常针对细胞而不是基因,并且没有描述基因簇转录组异质性的差异水平。从多个数据集推断出的基因簇之间的关系也较少被探索。我们提供了一系列定量方法来分析癌症 sc-RNAseq 数据。首先,我们提出了两种定量方法来评估肿瘤内的异质性/同质性。其次,我们从 sc-RNAseq 数据中建立了基因簇层次结构,设计了一种算法将基因簇层次结构简化为紧凑的结构,并通过功能富集和异质性来描述基因簇。第三,我们开发了一种算法将来自多个数据集的基因簇层次结构对齐到少数元基因簇。通过将这些方法应用于九个癌症 sc-RNAseq 数据集,我们发现肿瘤细胞的转录组在肿瘤内比伴随的正常细胞更均匀。此外,来自九个数据集的许多基因簇被对齐到两个大的元基因簇,这两个元基因簇具有高低异质性,并且富含不同的功能。最后,我们发现均匀的元基因簇在批量 RNAseq 数据中比异质的元基因簇保留了更强的表达一致性和与生存时间的关联,但批量数据中乳腺癌亚型的组合表达模式在单细胞数据中没有保留。从九个癌症 sc-RNAseq 数据集推断出的结果提供了关于肿瘤细胞转录组异质性的影响因素以及批量和单细胞 RNAseq 数据之间复杂关系的见解。它们证明了我们的方法能够在癌症和其他领域的广泛 sc-RNAseq 数据中全面描述共表达基因簇的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c4/9235070/53991dafbed9/biolopen-11-059256-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验