Lendület Evolutionary Ecology Research Group, Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Nagykovácsi str. 26-30., Budapest 1029, Hungary.
Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary.
Mycologia. 2022 Jul-Aug;114(4):661-669. doi: 10.1080/00275514.2022.2065443. Epub 2022 Jun 6.
Chytridiomycosis, an emerging infectious disease caused by (Bd), poses a serious threat to amphibians. The thermal optimum of Bd is lower than that of most amphibians, providing an opportunity to cure infected individuals with elevated temperature. However, this approach presupposes detailed knowledge about the thermal tolerance of the fungus. To determine the temperature that may effectively reduce infection burdens in vivo, detailed in vitro studies are needed to characterize thermal tolerance of the fungus without complexities introduced by the species-specific characteristics of hosts' immune systems. The aim of our study was to evaluate the thermal tolerance of a hypervirulent isolate of Bd, considering the limits of its thermal tolerance and its capacity to rebound following heat treatment. We incubated Bd cell cultures at five different temperatures (21, 25.5, 27, 29, or 30.5 C) for one of six exposure durations (3, 4, 5, 6, 7, or 8 days) and subsequently counted the number of zoospores to assess the temperature dependence of Bd growth. We observed intensive Bd growth at 21 C. At 25.5 C, the number of zoospores also increased over time, but the curve plateaued at about half of the maximum values observed in the lower temperature treatment. At temperatures of 27 C and above, the fungus showed no measurable growth. However, when we moved the cultures back to 21 C after the elevated temperature treatments, we observed recovery of Bd growth in all cultures previously treated at 27 C. At 29 C, a treatment duration of 8 days was necessary to prevent recovery of Bd growth, and at 30.5 C a treatment duration of 5 days was needed to achieve the same result, revealing that these moderately elevated temperatures applied for only a few days have merely a fungistatic rather than a fungicidal effect under in vitro conditions.
蛙壶菌病是一种由(Bd)引起的新兴传染病,对两栖动物构成严重威胁。Bd 的最适温度低于大多数两栖动物的最适温度,这为通过升高温度来治疗感染个体提供了机会。然而,这种方法需要详细了解真菌的热耐受性。为了确定可能有效降低体内感染负担的温度,需要进行详细的体外研究,以在不引入宿主免疫系统物种特异性特征复杂性的情况下,描述真菌的热耐受性。我们的研究目的是评估一种高毒力的蛙壶菌分离株的热耐受性,考虑其热耐受极限及其在热处理后反弹的能力。我们将 Bd 细胞培养物在五个不同温度(21、25.5、27、29 或 30.5°C)下孵育六个不同的暴露时间(3、4、5、6、7 或 8 天)之一,然后计数游动孢子的数量,以评估 Bd 生长对温度的依赖性。我们观察到在 21°C 时 Bd 生长旺盛。在 25.5°C 时,游动孢子的数量也随时间增加,但曲线在大约低于下限温度处理的最大值的一半处达到平台。在 27°C 及以上的温度下,真菌没有可测量的生长。然而,当我们在高温处理后将培养物移回 21°C 时,我们观察到所有先前在 27°C 处理过的培养物中的 Bd 生长都得到了恢复。在 29°C 下,需要 8 天的处理时间才能防止 Bd 生长的恢复,而在 30.5°C 下,需要 5 天的处理时间才能达到相同的结果,这表明在体外条件下,这些适度升高的温度仅在几天内应用,只会产生抑菌作用而不是杀菌作用。