Suppr超能文献

计算定义的不确定性厌恶标志物可预测全球大流行期间的情绪反应。

Computationally-defined markers of uncertainty aversion predict emotional responses during a global pandemic.

机构信息

Division of Humanities and Social Sciences, California Institute of Technology.

Department of Biological and Experimental Psychology, Queen Mary University of London.

出版信息

Emotion. 2023 Apr;23(3):722-736. doi: 10.1037/emo0001088. Epub 2022 Jun 6.

Abstract

Exposure to stressful life events involving threat and uncertainty often results in the development of anxiety. However, the factors that confer risk and resilience for anxiety following real world stress at a computational level remain unclear. We identified core components of uncertainty aversion moderating response to stress posed by the COVID-19 pandemic derived from computational modeling of decision making. Using both cross-sectional and longitudinal analyses, we investigated both immediate effects at the onset of the stressor, as well as medium-term changes in response to persistent stress. 479 subjects based in the United States completed a decision-making task measuring risk aversion, loss aversion, and ambiguity aversion in the early stages of the pandemic (March 2020). Self-report measures targeting threat perception, anxiety, and avoidant behavior in response to the pandemic were collected at the same time point and 8 weeks later (May 2020). Cross-sectional analyses indicated that higher risk aversion predicted higher perceived threat from the pandemic, and ambiguity aversion for guaranteed gains predicted perceived threat and pandemic-related anxiety. In longitudinal analyses, ambiguity aversion for guaranteed gains predicted greater increases in perceived infection likelihood. Together, these results suggest that individuals who have a low-level aversion toward uncertainty show stronger negative emotional reactions to both the onset and persistence of real-life stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

暴露于涉及威胁和不确定性的压力性生活事件通常会导致焦虑的发展。然而,在计算层面上,对于现实世界压力后出现焦虑的风险和弹性因素仍不清楚。我们从决策的计算模型中确定了不确定性规避的核心组成部分,这些组成部分调节了对 COVID-19 大流行带来的压力的反应。我们使用横断面和纵向分析,研究了应激源开始时的即时效应,以及对持续应激的反应的中期变化。479 名居住在美国的受试者在大流行早期(2020 年 3 月)完成了一项衡量风险规避、损失规避和模糊规避的决策任务。在同一时间点和 8 周后(2020 年 5 月)收集了针对威胁感知、焦虑和对大流行的回避行为的自我报告测量。横断面分析表明,较高的风险规避预示着对大流行的感知威胁更高,而对保证收益的模糊规避则预示着感知威胁和与大流行相关的焦虑。在纵向分析中,对保证收益的模糊规避预示着感知感染可能性的更大增加。这些结果表明,对不确定性的低水平回避的个体对现实生活压力的开始和持续都表现出更强的负面情绪反应。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。

相似文献

3
Emotional expressions associated with therapeutic inertia in multiple sclerosis care.多发性硬化症治疗惰性相关的情绪表达。
Mult Scler Relat Disord. 2019 Sep;34:17-28. doi: 10.1016/j.msard.2019.05.029. Epub 2019 Jun 4.
7
Intolerance of uncertainty and reactions to the COVID-19 pandemic.对不确定性的不耐受以及对新冠疫情的反应。
J Gen Psychol. 2023 Apr-Jun;150(2):143-170. doi: 10.1080/00221309.2021.1922346. Epub 2021 May 18.

本文引用的文献

10
A computational account of threat-related attentional bias.威胁相关注意偏向的计算解释。
PLoS Comput Biol. 2019 Oct 10;15(10):e1007341. doi: 10.1371/journal.pcbi.1007341. eCollection 2019 Oct.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验