Suppr超能文献

利用主题建模和 Twitter 数据网络分析考察全球卫生治理中的权力动态。

Examining power dynamics in global health governance using topic modeling and network analysis of Twitter data.

机构信息

School of Social Policy and Practice, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

School of Social Policy and Practice, University of Pennsylvania, Philadelphia, Pennsylvania, USA

出版信息

BMJ Open. 2022 Jun 6;12(6):e054470. doi: 10.1136/bmjopen-2021-054470.

Abstract

OBJECTIVES

Despite increases in global health actors and funding levels, health inequities persist. We empirically tested whether global health governance (GHG) operates under the rational actor model (RAM) and characterised GHG power dynamics.

DESIGN

We collected approximately 75 000 tweets of 20 key global health actors, between 2016 and 2020, using Twitter API. We generated priorities from tweets collected using topic modelling. Priorities from tweets were compared with stated priorities from content analyses of policy documents and with revealed priorities from network analyses of development assistance for health funding data. Comparing priorities derived from Twitter, policy documents and funding data, we can test whether GHG operates under RAM and characterise power dynamics in GHG.

PARTICIPANTS

20 global health actors were identified based on a consensus of three peer-reviewed articles mapping global health networks. All tweets of each actor were collected in 3-month intervals from November 2016 to May 2020. Policy documents and developmental assistance for health (DAH) financial data for each actor were collected for the same period.

RESULTS

We find all 20 actors and the global health system collectively fulfil the three conditions of RAM based on stated and revealed priorities. We also find compulsory and institutional power asymmetries in GHG. Funding organisations have compulsory power over channels of DAH and implementing institutions they directly fund. Funding organisations also have transitive influence over implementing institutions receiving DAH funding.

CONCLUSIONS

We find that there is a correlation between the priorities of large funders and the priorities of health actors. This correlation in conjunction with GHG operating under the RAM and the asymmetric power held by funders raises issues. GHG under the RAM grants large funders majority of the power to determine global health priorities and ultimately influencing outcomes while implementing organisations, especially those that work closest with populations, have little to limited influence in priority-setting.

摘要

目的

尽管全球卫生行动者和资金水平有所增加,但健康不平等仍然存在。我们通过实证检验全球卫生治理(GHG)是否符合理性行动者模型(RAM),并描述 GHG 的权力动态。

设计

我们使用 Twitter API 收集了 2016 年至 2020 年间 20 个主要全球卫生行为者的大约 75000 条推文。我们使用主题建模从收集的推文中生成重点。从推文中提取的重点与对政策文件内容分析得出的既定重点以及对卫生发展援助供资数据网络分析得出的揭示重点进行了比较。通过比较从 Twitter、政策文件和供资数据中得出的重点,我们可以检验 GHG 是否符合 RAM,并描述 GHG 中的权力动态。

参与者

根据三篇经同行评审的文章对全球卫生网络进行映射,确定了 20 个全球卫生行为者。从 2016 年 11 月到 2020 年 5 月,每 3 个月收集一次每个行为者的所有推文。为每个行为者收集了同一时期的政策文件和卫生发展援助(DAH)财务数据。

结果

根据既定和揭示的重点,我们发现所有 20 个行为者和全球卫生系统共同满足 RAM 的三个条件。我们还发现 GHG 中存在强制性和制度性权力不对称。供资组织对它们直接供资的 DAH 渠道和执行机构拥有强制性权力。供资组织还对接受 DAH 供资的执行机构具有传递性影响。

结论

我们发现,大型供资者的重点与卫生行为者的重点之间存在相关性。这种相关性,加上 GHG 遵循 RAM 以及供资者拥有的不对称权力,引发了一些问题。RAM 下的 GHG 赋予大型供资者确定全球卫生重点的大部分权力,并最终影响结果,而执行组织,尤其是那些与人群关系最密切的组织,在重点设定方面几乎没有或有限的影响力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad3a/9171232/939e5244065d/bmjopen-2021-054470f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验