Suppr超能文献

[具体基因名称]和[具体基因名称]表达的增加为从[朝代名称]到栽培时代[植物名称]根系大小的扩大提供了见解。

Increasing Expression of and Provides Insights Into the Enlargement of Root Size From Dynasty to Cultivation Era.

作者信息

Yu Mu-Yao, Hua Zhong-Yi, Liao Pei-Ran, Zheng Han, Jin Yan, Peng Hua-Sheng, Cui Xiu-Ming, Huang Lu-Qi, Yuan Yuan

机构信息

State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.

出版信息

Front Plant Sci. 2022 May 20;13:878796. doi: 10.3389/fpls.2022.878796. eCollection 2022.

Abstract

Root size is a key trait in plant cultivation and can be influenced by the cultivation environment. However, physical evidence of root size change in a secular context is scarce due to the difficulty in preserving ancient root samples, and how they were modified during the domestication and cultivation stays unclear. About 100 ancient root samples of , preserved as tribute in the Palace Museum (A.D. 1636 to 1912, dynasty), provided an opportunity to investigate the root size changes during the last 100 years of cultivation. The dry weight of ancient root samples (~120 samples, represents number of roots per 500 g dry weight) is 0.22-fold of the modern samples with the biggest size (20 samples). Transcriptome analysis revealed that and were highly expressed in 20 samples, compared with the 120 samples, which might contribute to the thicker cell wall and a higher content of lignin, cellulose, and callose in 20 samples. A relatively lower content of dencichine and higher content of ginsenoside Rb in 20 samples are also consistent with higher expression of ginsenoside biosynthesis-related genes. PnPHL8 was filtrated through transcriptome analysis, which could specifically bind the promoters of , and , respectively. The results in this study represent the first physical evidence of root size changes in in the last 100 years of cultivation and contribute to a comprehensive understanding of how the cultivation environment affected root size, chemical composition, and clinical application.

摘要

根大小是植物栽培中的一个关键性状,并且会受到栽培环境的影响。然而,由于古代根系样本保存困难,长期以来根大小变化的实物证据很少,而且它们在驯化和栽培过程中是如何改变的仍不清楚。故宫博物院(公元1636年至1912年, 朝代)保存的约100份古代根系样本作为贡品,为研究过去100年栽培过程中的根大小变化提供了机会。古代根系样本(约120个样本, 表示每500克干重的根数量)的干重是最大尺寸现代样本(20个样本)的0.22倍。转录组分析表明,与120个样本相比, 和 在20个样本中高表达,这可能导致20个样本中细胞壁更厚,木质素、纤维素和胼胝质含量更高。20个样本中相对较低的三七素含量和较高的人参皂苷Rb含量也与人参皂苷生物合成相关基因的高表达一致。通过转录组分析筛选出PnPHL8,它可以分别特异性结合 、 和 的启动子。本研究结果代表了过去100年栽培中 根大小变化的首个实物证据,有助于全面了解栽培环境如何影响根大小、化学成分和临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e6d/9164015/cb097f9fac10/fpls-13-878796-g0001.jpg

相似文献

1
Increasing Expression of and Provides Insights Into the Enlargement of Root Size From Dynasty to Cultivation Era.
Front Plant Sci. 2022 May 20;13:878796. doi: 10.3389/fpls.2022.878796. eCollection 2022.
4
Determination of Dencichine in in the Forest and Field Using High Performance Liquid Chromatography.
ACS Omega. 2023 Jul 18;8(30):27450-27457. doi: 10.1021/acsomega.3c02962. eCollection 2023 Aug 1.
6
The chromosome-level reference genome assembly for and insights into ginsenoside biosynthesis.
Plant Commun. 2020 Sep 20;2(1):100113. doi: 10.1016/j.xplc.2020.100113. eCollection 2021 Jan 11.
7
Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng.
J Agric Food Chem. 2014 Sep 10;62(36):9024-34. doi: 10.1021/jf502214x. Epub 2014 Sep 2.
9
Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis.
Int J Biol Macromol. 2023 Apr 1;233:123648. doi: 10.1016/j.ijbiomac.2023.123648. Epub 2023 Feb 11.

引用本文的文献

1
Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs.
Hortic Res. 2025 Jan 16;12(4):uhaf011. doi: 10.1093/hr/uhaf011. eCollection 2025 Apr.

本文引用的文献

2
[Effects of ecological factors on shape and ginsenoside of Panax ginseng].
Zhongguo Zhong Yao Za Zhi. 2021 Apr;46(8):1920-1926. doi: 10.19540/j.cnki.cjcmm.20210123.102.
3
The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis.
Plant Biotechnol J. 2021 May;19(5):869-871. doi: 10.1111/pbi.13558. Epub 2021 Feb 14.
4
The chromosome-level reference genome assembly for and insights into ginsenoside biosynthesis.
Plant Commun. 2020 Sep 20;2(1):100113. doi: 10.1016/j.xplc.2020.100113. eCollection 2021 Jan 11.
5
A Citrus Phosphate Starvation Response Factor CsPHL3 Negatively Regulates Carotenoid Metabolism.
Plant Cell Physiol. 2021 Jul 17;62(3):482-493. doi: 10.1093/pcp/pcab007.
7
Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery.
Nat Chem Biol. 2020 Jul;16(7):740-748. doi: 10.1038/s41589-020-0541-x. Epub 2020 May 18.
9
Plant PHR Transcription Factors: Put on A Map.
Genes (Basel). 2019 Dec 6;10(12):1018. doi: 10.3390/genes10121018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验