Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Huiying Medical Technology Co., Ltd., Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing 100192, China.
Dis Markers. 2022 May 28;2022:9108129. doi: 10.1155/2022/9108129. eCollection 2022.
This study is aimed at determining whether CT-based radiomics models can help differentiate renal angiomyolipomas with minimal fat (AMLmf) from other solid renal tumors.
This retrospective study included 58 patients with a postoperative pathologically confirmed AMLmf (observation group) and 140 patients with other common renal tumors (control group). Non-contrast-enhanced CT and contrast-enhanced CT data were evaluated. Radiomics features were extracted from manually delineated volume of interest (VOIs). The least absolute shrinkage and selection operator (LASSO) regression was used for feature screening. Five classifiers, including logistic regression, multilayer perceptron (MLP), support vector machine (SVM), -nearest neighbor (KNN), and logistic regression (LR), were used, with leave-out validation (128 training, 60 testing). The diagnostic performance of the classifier was evaluated and compared by receiver operating characteristic curve (ROC) analysis.
Among the 1029 extracted features, prediction models of AMLmf were composed, by 2, 10, 4, and 9 selected features for precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP), and excretory phase (EP), respectively. Models of CMP and NP achieved adequate performance after using MLP classifier, with prediction accuracy of 0.767 (AUC 0.85, sensitivity 0.76, and specificity 0.78) and 0.783 (AUC 0.83, sensitivity 0.79, and specificity 0.78), respectively. MLP model of features selected from the combination of the all features had the best diagnostic performance (accuracy 0.8500, sensitivity 0.8095, specificity 0.9444, and AUC 0.9193).
Radiomics features may help to distinguish benign AMLmf from common malignant kidney masses, which may contribute to the selection of interventions for renal tumors.
本研究旨在确定基于 CT 的放射组学模型是否有助于区分含少量脂肪的肾血管平滑肌脂肪瘤(AMLmf)与其他实体性肾肿瘤。
本回顾性研究纳入了 58 例术后经病理证实的 AMLmf 患者(观察组)和 140 例其他常见肾肿瘤患者(对照组)。评估非增强 CT 和增强 CT 数据。从手动勾画的感兴趣区(VOI)中提取放射组学特征。使用最小绝对收缩和选择算子(LASSO)回归进行特征筛选。使用逻辑回归、多层感知机(MLP)、支持向量机(SVM)、k-最近邻(KNN)和逻辑回归(LR)五种分类器,采用 128 次训练和 60 次测试的留一验证法。通过受试者工作特征曲线(ROC)分析评估和比较分类器的诊断性能。
在提取的 1029 个特征中,PCP、CMP、NP 和 EP 分别由 2、10、4 和 9 个选定特征组成 AMLmf 预测模型。使用 MLP 分类器后,CMP 和 NP 模型的性能良好,预测准确率分别为 0.767(AUC 为 0.85,敏感度为 0.76,特异度为 0.78)和 0.783(AUC 为 0.83,敏感度为 0.79,特异度为 0.78)。基于所有特征组合选择特征的 MLP 模型具有最佳诊断性能(准确率为 0.8500,敏感度为 0.8095,特异度为 0.9444,AUC 为 0.9193)。
放射组学特征有助于区分良性 AMLmf 与常见恶性肾肿块,这可能有助于选择肾肿瘤的干预措施。