Suppr超能文献

基于机器学习的小肾肿块 CT 图像定量纹理分析:无可见脂肪的血管平滑肌脂肪瘤与肾细胞癌的鉴别。

Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

机构信息

Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.

GE Healthcare, Shanghai, 210000, China.

出版信息

Eur Radiol. 2018 Apr;28(4):1625-1633. doi: 10.1007/s00330-017-5118-z. Epub 2017 Nov 13.

Abstract

OBJECTIVE

To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC).

METHODS

This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed.

RESULTS

Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively.

CONCLUSION

Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC.

KEY POINTS

• Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

摘要

目的

评估基于机器学习的 CT 图像定量纹理分析在区分小(≤4cm)无可见脂肪的血管平滑肌脂肪瘤(AMLwvf)与肾细胞癌(RCC)中的诊断性能。

方法

本单中心回顾性研究纳入了 58 名经病理证实的小肾肿块患者(AMLwvf 组 17 例,RCC 组 41 例)。通过手动分割术前三期 CT 图像中的最大肿瘤感兴趣区(ROI),提取纹理特征。采用观察者间可靠性和曼-惠特尼 U 检验对特征进行初步选择。然后采用支持向量机递归特征消除(SVM-RFE)和合成少数过采样技术(SMOTE)建立判别分类器,并评估分类器的性能。

结果

在提取的 42 个特征中,16 个候选特征在组间存在显著差异(P<0.05),且观察者间一致性良好。SVM-RFE 方法进一步选择了最优的包含 11 个特征的特征子集。SVM-RFE+SMOTE 分类器在区分小 AMLwvf 和 RCC 方面表现最佳,其准确性、敏感性、特异性和 AUC 分别为 93.9%、87.8%、100%和 0.955。

结论

基于机器学习的 CT 纹理特征分析有助于准确区分小 AMLwvf 和 RCC。

重点

①尽管常规 CT 对 SRM 的诊断有用,但存在局限性。②基于机器学习的 CT 纹理分析有助于区分小 AMLwvf 和 RCC。③SVM-RFE+SMOTE 分类器的准确率最高可达 93.9%。④纹理分析结合机器学习方法可能为 AMLwvf 患者节省不必要的手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验