Suppr超能文献

CA-XTree:基于局部通道注意力的分组梯度回归树年龄估计。

CA-XTree: Age Estimation of Grouped Gradient Regression Tree with Local Channel Attention.

机构信息

School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, China.

Hebei Key Laboratory for Electromagnetic Environmental Effects and Information Processing, Shijiazhuang 050043, China.

出版信息

Comput Intell Neurosci. 2022 May 28;2022:4155461. doi: 10.1155/2022/4155461. eCollection 2022.

Abstract

Face age estimation has been widely used in video surveillance, human-computer interaction, market analysis, image processing analysis, and many fields. There are several problems that need to be solved in image-based face age estimation: (1) redundant information of age characteristics; (2) limitations of age estimation methods in solving age estimation problems; (3) the performance of age estimation models being also affected by gender factors. This paper proposes CA-XTree network. Firstly, features are extracted through the convolution layer and then combined with the local channel attention module to strengthen the ability of age feature information interaction between different channels. Secondly, extracted features are inputted into the recommendation score function to obtain the recommendation score, by combining the recommendation score with the gradient ascending regression tree. The lifting tree processed loss function is the mean square loss function, and the final age value is obtained by the leaf node. This paper improves state of the art for image classification on MORPH and CACD datasets. The advantage of our model is that it is easy to implement and has no excess memory overhead. In the age dataset CACD, the mean absolute error (MAE) has reached 4.535 and cumulative score (CS) has reached 63.53%, respectively.

摘要

人脸年龄估计已广泛应用于视频监控、人机交互、市场分析、图像处理分析等诸多领域。基于图像的人脸年龄估计需要解决以下几个问题:(1)年龄特征的冗余信息;(2)年龄估计方法在解决年龄估计问题方面的局限性;(3)年龄估计模型的性能也受到性别因素的影响。本文提出了 CA-XTree 网络。首先,通过卷积层提取特征,然后结合局部通道注意力模块,增强不同通道之间年龄特征信息的交互能力。其次,将提取的特征输入推荐评分函数,获得推荐评分,通过结合推荐评分和梯度上升回归树。提升树处理的损失函数是均方损失函数,最终年龄值通过叶节点获得。本文在 MORPH 和 CACD 数据集上提高了图像分类的最新水平。我们模型的优势在于易于实现,且没有额外的内存开销。在 CACD 年龄数据集上,平均绝对误差(MAE)达到 4.535,累计得分(CS)达到 63.53%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b63/9167079/d1b29601e1cf/CIN2022-4155461.001.jpg

相似文献

3
Hybrid dilation and attention residual U-Net for medical image segmentation.混合扩张和注意力残差 U-Net 用于医学图像分割。
Comput Biol Med. 2021 Jul;134:104449. doi: 10.1016/j.compbiomed.2021.104449. Epub 2021 May 11.

本文引用的文献

1
Convolutional Ordinal Regression Forest for Image Ordinal Estimation.卷积有序回归森林用于图像有序估计。
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):4084-4095. doi: 10.1109/TNNLS.2021.3055816. Epub 2022 Aug 3.
2
Age Regression from Faces Using Random Forests.使用随机森林从面部进行年龄回归。
Proc Int Conf Image Proc. 2009 Nov;2009:2465-2468. doi: 10.1109/ICIP.2009.5414103. Epub 2010 Feb 17.
3
From the desk of the editor.
Indian J Otolaryngol Head Neck Surg. 1997 Mar;49(Suppl 1):3-4. doi: 10.1007/BF03021317.
4
Automatic age estimation based on facial aging patterns.基于面部衰老模式的自动年龄估计。
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2234-40. doi: 10.1109/TPAMI.2007.70733.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验