Suppr超能文献

迈向发现用于治疗新冠肺炎的潜在RNA依赖性RNA聚合酶(RdRp)抑制剂:基于结构的虚拟筛选、计算药物代谢动力学及分子动力学研究

Towards the discovery of potential RdRp inhibitors for the treatment of COVID-19: structure guided virtual screening, computational ADME and molecular dynamics study.

作者信息

Alam Aftab, Agrawal Gopal Prasad, Khan Shamshir, Khalilullah Habibullah, Saifullah Muhammed Khalid, Arshad Mohammed Faiz

机构信息

Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 Kingdom of Saudi Arabia.

Institute of Pharmaceutical Research, GLA University, Mathura, India.

出版信息

Struct Chem. 2022;33(5):1569-1583. doi: 10.1007/s11224-022-01976-2. Epub 2022 Jun 2.

Abstract

Coronavirus disease 2019 (COVID-19) has become a major challenge affecting almost every corner of the world, with more than five million deaths worldwide. Despite several efforts, no drug or vaccine has shown the potential to check the ever-mutating SARS-COV-2. The emergence of novel variants is a major concern increasing the need for the discovery of novel therapeutics for the management of this pandemic. Out of several potential drug targets such as S protein, human ACE2, TMPRSS2 (transmembrane protease serine 2), 3CLpro, RdRp, and PLpro (papain-like protease), RNA-dependent RNA polymerase (RdRP) is a vital enzyme for viral RNA replication in the mammalian host cell and is one of the legitimate targets for the development of therapeutics against this disease. In this study, we have performed structure-based virtual screening to identify potential hit compounds against RdRp using molecular docking of a commercially available small molecule library of structurally diverse and drug-like molecules. Since non-optimal ADME properties create hurdles in the clinical development of drugs, we performed detailed in silico ADMET prediction to facilitate the selection of compounds for further studies. The results from the ADMET study indicated that most of the hit compounds had optimal properties. Moreover, to explore the conformational dynamics of protein-ligand interaction, we have performed an atomistic molecular dynamics simulation which indicated a stable interaction throughout the simulation period. We believe that the current findings may assist in the discovery of drug candidates against SARS-CoV-2.

摘要

2019年冠状病毒病(COVID-19)已成为一项重大挑战,影响着世界几乎每个角落,全球死亡人数超过500万。尽管做出了多项努力,但尚无药物或疫苗显示出能够抑制不断变异的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的潜力。新型变体的出现是一个主要问题,这增加了发现用于管理这一疫情的新型疗法的需求。在诸如刺突蛋白(S蛋白)、人血管紧张素转换酶2(ACE2)、跨膜丝氨酸蛋白酶2(TMPRSS2)、3C样蛋白酶(3CLpro)、RNA依赖性RNA聚合酶(RdRp)和木瓜样蛋白酶(PLpro)等多个潜在药物靶点中,RNA依赖性RNA聚合酶(RdRP)是哺乳动物宿主细胞中病毒RNA复制的关键酶,也是开发针对该疾病疗法的合理靶点之一。在本研究中,我们进行了基于结构的虚拟筛选,使用一个结构多样且具有药物特性的市售小分子文库进行分子对接,以识别针对RdRp的潜在活性化合物。由于非最佳的吸收、分布、代谢和排泄(ADME)特性会给药物的临床开发带来障碍,我们进行了详细的计算机辅助ADMET预测,以促进化合物的选择用于进一步研究。ADMET研究结果表明,大多数活性化合物具有最佳特性。此外,为了探索蛋白质-配体相互作用的构象动力学,我们进行了原子尺度的分子动力学模拟,结果表明在整个模拟期间相互作用稳定。我们相信,当前的研究结果可能有助于发现针对SARS-CoV-2的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d2e/9161180/c92b98ee9381/11224_2022_1976_Fig1_HTML.jpg

相似文献

本文引用的文献

2
SARS-CoV-2 variants in India: a call for genomic surveillance.
BMJ. 2021 Jun 7;373:n1426. doi: 10.1136/bmj.n1426.
7
Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.SARS-CoV-2 变体 B.1.351 和 B.1.1.7 的抗体抗性。
Nature. 2021 May;593(7857):130-135. doi: 10.1038/s41586-021-03398-2. Epub 2021 Mar 8.
9
Coronavirus disease 2019 management.2019冠状病毒病的管理
Curr Opin Pulm Med. 2021 May 1;27(3):169-175. doi: 10.1097/MCP.0000000000000766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验