Suppr超能文献

多步十字流微流控装置中的几何效应在红细胞分离和变形性评估中的应用。

Geometry effect in multi-step crossflow microfluidic devices for red blood cells separation and deformability assessment.

机构信息

Microelectromechanical Systems Research Unit, CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal.

LABBELS-Associate Laboratory, Braga/Guimarães, Portugal.

出版信息

Biomed Microdevices. 2022 Jun 7;24(2):20. doi: 10.1007/s10544-022-00616-0.

Abstract

The efficient separation of blood components using microfluidic systems can help to improve the detection and diagnosis of several diseases, such as malaria and diabetes. Therefore, a novel multi-step microfluidic device, based on passive crossflow filters was developed. Three different designs were proposed, fabricated and tested in order to evaluate the most suitable geometry to perform, simultaneously, blood cells separation and cell deformability measurements. All the proposed geometries include a main channel and three sequential separation steps, all comprised of symmetrical crossflow filters, with multiple rows of pillars, to reduce the amount of red blood cells (RBCs) flowing to the outlets of the microfluidic device (MD). Sets of hyperbolic constrictions located at the outlets allow the assessment of cells deformability. Based on the proposed geometries, the three correspondent MD were evaluated and compared, by measuring the RBCs velocities, the cell-free layer (CFL) effect through the microchannels and by quantifying the amount of RBCs at the outlets. The results suggest that the proposed MD 3 configuration was the most effective one for the desired application, due to the formation of a wider CFL. As a result, a minor amount of RBCs flow through the hyperbolic contraction at the third separation level of the device. Nevertheless, for all the proposed geometries, the existence of three separation levels shows that it is possible to achieve a highly efficient cell separation. If needed, such microdevices have the potential for further improvements by increasing the number of separation levels, aiming the total separation of blood cells from plasma.

摘要

使用微流控系统高效分离血液成分有助于提高疟疾和糖尿病等多种疾病的检测和诊断水平。因此,我们开发了一种新颖的多步微流控装置,该装置基于被动横流过滤器。提出、制造并测试了三种不同的设计,以评估最适合的几何形状,同时实现血细胞分离和细胞变形性测量。所有提出的几何形状都包括一个主通道和三个连续的分离步骤,均由对称的横流过滤器组成,具有多排柱子,以减少流向微流控装置(MD)出口的红细胞(RBC)数量。位于出口处的一组双曲收缩允许评估细胞变形性。基于所提出的几何形状,评估并比较了对应的三个 MD,通过测量 RBC 速度、通过微通道的无细胞层(CFL)效应以及量化 RBC 在出口处的数量。结果表明,由于形成了更宽的 CFL,所提出的 MD3 构型对于所需的应用是最有效的。结果,少量的 RBC 通过装置的第三分离级的双曲收缩流动。尽管如此,对于所有提出的几何形状,三级分离的存在表明可以实现高度有效的细胞分离。如果需要,可以通过增加分离级别的数量进一步改进这种微器件,从而实现从血浆中完全分离血细胞。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验