Scotti Andrea, Schulte M Friederike, Lopez Carlos G, Crassous Jérôme J, Bochenek Steffen, Richtering Walter
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union.
Chem Rev. 2022 Jul 13;122(13):11675-11700. doi: 10.1021/acs.chemrev.2c00035. Epub 2022 Jun 7.
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
柔软性在决定胶体系统的宏观性质方面起着关键作用,这些胶体系统涵盖从合成纳米凝胶到生物大分子,从病毒到星形聚合物等。然而,在纳米科学中,我们仍缺乏一种方法来量化“柔软性”这一术语的含义。拥有定量参数对于比较不同系统以及理解柔软性对宏观性质的影响至关重要。在此,我们提出了一些可以通过散射方法和显微镜实验测量的不同量。基于这些量,我们回顾了关于微凝胶和纳米凝胶的近期文献,即水中溶胀的交联聚合物网络,这是一种广泛用于软胶体的模型系统。应用我们的标准,我们探讨了是什么使纳米材料具有柔软性这一问题。我们讨论并引入了通用标准,以量化单个可压缩胶体柔软性的不同定义。这是根据与变形相关的能量成本以及胶体各向同性收缩的能力来进行的。然后,我们考虑了软胶体的浓溶液。从刻面和相互渗透的角度引入了依赖于粒子间相互作用的柔软性新定义和新参数。讨论了不同合成路线对纳米凝胶柔软性的影响。我们考虑了纳米凝胶的浓溶液,并根据我们定义的不同参数,回顾了文献中关于纳米凝胶在三维和二维中的相行为和流动性质的近期结果。本综述的目的是以更定量的方式审视微凝胶和纳米凝胶的研究结果,使我们能够根据胶体柔软性的差异来解释所报道的性质。此外,本综述可以为研究软胶体的研究人员提供定量方法,以明确界定在其化合物中哪种柔软性起作用。