Valencian International University, Valencia, Spain, and Applied Biophysics and Bioengineering Group, Simon Bolivar University, Caracas, Venezuela.
Valencian International University, Valencia, Spain.
Phys Med. 2022 Jul;99:113-119. doi: 10.1016/j.ejmp.2022.05.015. Epub 2022 Jun 4.
Intracerebral hemorrhage (ICH) is a high mortality rate, critical medical injury, produced by the rupture of a blood vessel of the vascular system inside the skull. ICH can lead to paralysis and even death. Therefore, it is considered a clinically dangerous disease that needs to be treated quickly. Thanks to the advancement in machine learning and the computing power of today's microprocessors, deep learning has become an unbelievably valuable tool for detecting diseases, in particular from medical images. In this work, we are interested in differentiating computer tomography (CT) images of healthy brains and ICH using a ResNet-18, a deep residual convolutional neural network. In addition, the gradient-weighted class activation mapping (Grad-CAM) technique was employed to visually explore and understand the network's decisions. The generalizability of the detector was assessed through a 100-iteration Monte Carlo cross-validation (80% of the data for training and 20% for test). In a database with 200 CT images of brains (100 with ICH and 100 without ICH), the detector yielded, on average, 95.93%accuracy, 96.20% specificity, 95.65% sensitivity, 96.40% precision, and 95.91% F1-core, with an average computing time of 165.90 s to train the network (on 160 images) and 1.17 s to test it with 40 CT images. These results are comparable with the state of the art with a simpler and lower computational load approach. Our detector could assist physicians in their medical decision, in resource optimization and in reducing the time and error in the diagnosis of ICH.
脑出血(ICH)是一种高死亡率、危急的医学损伤,由颅骨内血管系统的血管破裂引起。ICH 可导致瘫痪,甚至死亡。因此,它被认为是一种需要迅速治疗的临床危险疾病。由于机器学习的进步和当今微处理器的计算能力,深度学习已成为一种非常有价值的工具,可以用于检测疾病,特别是从医学图像中检测疾病。在这项工作中,我们有兴趣使用 ResNet-18(一种深度残差卷积神经网络)区分健康大脑和 ICH 的计算机断层扫描(CT)图像。此外,还采用了梯度加权类激活映射(Grad-CAM)技术来直观地探索和理解网络的决策。通过 100 次迭代蒙特卡罗交叉验证(80%的数据用于训练,20%的数据用于测试)评估了检测器的泛化能力。在一个包含 200 张大脑 CT 图像的数据库中(100 张有 ICH,100 张没有 ICH),该检测器的平均准确率为 95.93%,特异性为 96.20%,敏感性为 95.65%,精度为 96.40%,F1 核心值为 95.91%,平均训练网络的计算时间为 165.90 秒(在 160 张图像上),用 40 张 CT 图像测试的时间为 1.17 秒。这些结果与具有更简单和更低计算负载的方法的最新技术相当。我们的检测器可以帮助医生做出医疗决策,优化资源,并减少 ICH 诊断中的时间和错误。