Elsheikh Samer, Elbaz Ahmed, Rau Alexander, Demerath Theo, Fung Christian, Kellner Elias, Urbach Horst, Reisert Marco
Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacherstr. 64, 79106, Freiburg, Germany.
Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.
Neuroradiology. 2024 Apr;66(4):601-608. doi: 10.1007/s00234-024-03311-4. Epub 2024 Feb 17.
In cases of acute intracerebral hemorrhage (ICH) volume estimation is of prognostic and therapeutic value following minimally invasive surgery (MIS). The ABC/2 method is widely used, but suffers from inaccuracies and is time consuming. Supervised machine learning using convolutional neural networks (CNN), trained on large datasets, is suitable for segmentation tasks in medical imaging. Our objective was to develop a CNN based machine learning model for the segmentation of ICH and of the drain and volumetry of ICH following MIS of acute supratentorial ICH on a relatively small dataset.
Ninety two scans were assigned to training (n = 29 scans), validation (n = 4 scans) and testing (n = 59 scans) datasets. The mean age (SD) was 70 (± 13.56) years. Male patients were 36. A hierarchical, patch-based CNN for segmentation of ICH and drain was trained. Volume of ICH was calculated from the segmentation mask.
The best performing model achieved a Dice similarity coefficient of 0.86 and 0.91 for the ICH and drain respectively. Automated ICH volumetry yielded high agreement with ground truth (Intraclass correlation coefficient = 0.94 [95% CI: 0.91, 0.97]). Average difference in the ICH volume was 1.33 mL.
Using a relatively small dataset, originating from different CT-scanners and with heterogeneous voxel dimensions, we applied a patch-based CNN framework and successfully developed a machine learning model, which accurately segments the intracerebral hemorrhage (ICH) and the drains. This provides automated and accurate volumetry of the bleeding in acute ICH treated with minimally invasive surgery.
在急性脑出血(ICH)病例中,微创外科手术(MIS)后血肿体积估计具有预后和治疗价值。ABC/2方法被广泛使用,但存在不准确且耗时的问题。使用卷积神经网络(CNN)进行的监督式机器学习,在大型数据集上进行训练,适用于医学成像中的分割任务。我们的目标是在一个相对较小的数据集上,开发一种基于CNN的机器学习模型,用于分割急性幕上ICH的MIS后的ICH、引流管并测量ICH体积。
92次扫描被分配到训练(n = 29次扫描)、验证(n = 4次扫描)和测试(n = 59次扫描)数据集。平均年龄(标准差)为70(±13.56)岁。男性患者36例。训练了一种用于分割ICH和引流管的分层、基于补丁的CNN。ICH体积通过分割掩码计算得出。
性能最佳的模型对ICH和引流管的骰子相似系数分别达到0.86和0.91。自动ICH体积测量与真实值高度一致(组内相关系数 = 0.94 [95% CI:0.91, 0.97])。ICH体积的平均差异为1.33 mL。
使用来自不同CT扫描仪且体素尺寸各异的相对较小数据集,我们应用了基于补丁的CNN框架,并成功开发了一种机器学习模型,该模型能准确分割脑内血肿(ICH)和引流管。这为微创治疗的急性ICH出血提供了自动且准确的体积测量。