Suppr超能文献

识别 COVID-19 在多伦多的时空传播模式及其驱动因素:贝叶斯分层时空建模。

Identifying spatiotemporal patterns of COVID-19 transmissions and the drivers of the patterns in Toronto: a Bayesian hierarchical spatiotemporal modelling.

机构信息

School of Public Health Sciences, University of Waterloo, 200 University Ave., Waterloo, ON, N2L3G1, Canada.

School of Planning, University of Waterloo, 200 University Ave., Waterloo, ON, N2L3G1, Canada.

出版信息

Sci Rep. 2022 Jun 7;12(1):9369. doi: 10.1038/s41598-022-13403-x.

Abstract

Spatiotemporal patterns and trends of COVID-19 at a local spatial scale using Bayesian approaches are hardly observed in literature. Also, studies rarely use satellite-derived long time-series data on the environment to predict COVID-19 risk at a spatial scale. In this study, we modelled the COVID-19 pandemic risk using a Bayesian hierarchical spatiotemporal model that incorporates satellite-derived remote sensing data on land surface temperature (LST) from January 2020 to October 2021 (89 weeks) and several socioeconomic covariates of the 140 neighbourhoods in Toronto. The spatial patterns of risk were heterogeneous in space with multiple high-risk neighbourhoods in Western and Southern Toronto. Higher risk was observed during Spring 2021. The spatiotemporal risk patterns identified 60% of neighbourhoods had a stable, 37% had an increasing, and 2% had a decreasing trend over the study period. LST was positively, and higher education was negatively associated with the COVID-19 incidence. We believe the use of Bayesian spatial modelling and the remote sensing technologies in this study provided a strong versatility and strengthened our analysis in identifying the spatial risk of COVID-19. The findings would help in prevention planning, and the framework of this study may be replicated in other highly transmissible infectious diseases.

摘要

利用贝叶斯方法在局部空间尺度上观察到 COVID-19 的时空模式和趋势在文献中很少见。此外,研究很少使用卫星衍生的环境长时间序列数据来预测空间尺度上的 COVID-19 风险。在这项研究中,我们使用贝叶斯层次时空模型对 COVID-19 大流行风险进行建模,该模型结合了 2020 年 1 月至 2021 年 10 月(89 周)的卫星衍生陆地表面温度(LST)遥感数据以及多伦多 140 个街区的多个社会经济协变量。风险的空间模式在空间上存在异质性,多伦多西部和南部有多个高风险街区。2021 年春季观察到更高的风险。确定的时空风险模式显示,60%的街区具有稳定趋势,37%的街区具有增加趋势,2%的街区具有减少趋势。LST 与 COVID-19 发病率呈正相关,而高等教育与 COVID-19 发病率呈负相关。我们相信,在这项研究中使用贝叶斯空间建模和遥感技术提供了强大的多功能性,并加强了我们对 COVID-19 空间风险的分析。研究结果将有助于预防规划,并且本研究的框架可以在其他高传染性传染病中复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a671/9174218/b9fbe5c84613/41598_2022_13403_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验