Suppr超能文献

利用神经嵌入和递归神经网络从 Twitter 数据中提取药物效应关系

Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network.

机构信息

Department of Computer Information Technology & Graphics, Purdue University Northwest, Hammond, Indiana, U.S.A.

School of Information and Intelligent Engineering, Ningbo City College of Vocational Technology, Ningbo, Zhejiang, China.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:767-771. doi: 10.3233/SHTI220182.

Abstract

Recently, an active area of research in pharmacovigilance is to use social media such as Twitter as an alternative data source to gather patient-generated information pertaining to medication use. Most of thr published work focuses on identifying mentions of adverse effects in social media data but rarely investigating the relationship between a mentioned medication and any mentioned effect expressions. In this study, we treated this relation extraction task as a classification problem, and represented the Twitter text with neural embedding which was fed to a recurrent neural network classifier. The classification performance of our method was investigated in comparison with 4 baseline word embedding methods on a corpus of 9516 annotated tweets.

摘要

最近,药物警戒学领域的一个活跃研究方向是利用 Twitter 等社交媒体作为替代数据源,收集与药物使用相关的患者生成信息。已发表的大多数工作都集中在识别社交媒体数据中不良反应的提及,但很少调查提到的药物与任何提到的效果表达之间的关系。在这项研究中,我们将这种关系提取任务视为分类问题,并使用神经嵌入来表示 Twitter 文本,然后将其输入到循环神经网络分类器中。我们的方法的分类性能在 9516 条带注释的推文语料库上与 4 种基线词嵌入方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验