Suppr超能文献

在中央处理器和图形处理器上高效准确地计算跨越福克矩阵元的多个轨道空间以应用于F12理论

Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory.

作者信息

Urban Lars, Laqua Henryk, Ochsenfeld Christian

机构信息

Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.

Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany.

出版信息

J Chem Theory Comput. 2022 Jul 12;18(7):4218-4228. doi: 10.1021/acs.jctc.2c00215. Epub 2022 Jun 8.

Abstract

We employ our recently published highly efficient seminumerical exchange (sn-LinK) [Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. 2020, 16, 1456-1468] and integral-direct resolution of the identity Coulomb (RI-J) [Kussmann, J.; Laqua, H.; Ochsenfeld, C. 2021, 17, 1512-1521] methods to significantly accelerate the computation of the demanding multiple orbital spaces spanning Fock matrix elements present in R12/F12 theory on central and graphics processing units. The errors introduced by RI-J and sn-LinK into the RI-MP2-F12 energy are thoroughly assessed for a variety of basis sets and integration grids. We find that these numerical errors are always below "chemical accuracy" (∼1 mH) even for the coarsest settings and can easily be reduced below 1 μH by employing only moderately large integration grids and RI-J basis sets. Since the number of basis functions of the multiple orbital spaces is notably larger compared with conventional Hartree-Fock theory, the efficiency gains from the superior basis scaling of RI-J and sn-LinK (() instead of () for both) are even more significant, with maximum speedup factors of 37 000 for RI-J and 4500 for sn-LinK. In total, the multiple orbital spaces spanning Fock matrix evaluation of the largest tested structure using a triple-ζ F12 basis set (5058 AO basis functions, 9267 CABS basis functions) is accelerated over 1575× using CPUs and over 4155× employing GPUs.

摘要

我们采用了我们最近发表的高效半数值交换(sn-LinK)方法[Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. 2020, 16, 1456 - 1468]和恒等式库仑积分直接求解(RI-J)方法[Kussmann, J.; Laqua, H.; Ochsenfeld, C. 2021, 17, 1512 - 1521],以显著加速在中央处理器和图形处理器上对R12/F12理论中存在的、需要大量计算的多个轨道空间的福克矩阵元的计算。针对各种基组和积分网格,全面评估了RI-J和sn-LinK引入到RI-MP2-F12能量中的误差。我们发现,即使在最粗糙的设置下,这些数值误差始终低于“化学精度”(约1 mH),并且通过仅使用适度大的积分网格和RI-J基组,很容易将其降低到1 μH以下。由于与传统哈特里-福克理论相比,多个轨道空间的基函数数量显著更多,则RI-J和sn-LinK的卓越基函数缩放比例(两者均为()而非())所带来的效率提升更为显著,RI-J的最大加速因子为37000,sn-LinK为4500。总体而言,使用三重ζ F12基组(5058个原子轨道基函数,9267个CABS基函数)对最大测试结构进行多个轨道空间的福克矩阵评估,使用中央处理器时加速超过1575倍,使用图形处理器时加速超过4155倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验