Laqua Henryk, Thompson Travis H, Kussmann Jörg, Ochsenfeld Christian
Department of Chemistry, Chair of Theoretical Chemistry, University of Munich (LMU), D-81377 München, Germany.
J Chem Theory Comput. 2020 Mar 10;16(3):1456-1468. doi: 10.1021/acs.jctc.9b00860. Epub 2020 Feb 13.
We present a highly efficient and asymptotically linear-scaling graphic processing unit accelerated seminumerical exact-exchange method (sn-LinK). We go beyond our previous central processing unit-based method (Laqua, H.; Kussmann, J.; Ochsenfeld, C. . 2018, 14, 3451-3458) by employing our recently developed integral bounds (Thompson, T. H.; Ochsenfeld, C. . 2019, 150, 044101) and high-accuracy numerical integration grid (Laqua, H.; Kussmann, J.; Ochsenfeld, C. . 2018, 149, 204111). The accuracy is assessed for several established test sets, providing errors significantly below 1m for the smallest grid. Moreover, a comprehensive performance analysis for large molecules between 62 and 1347 atoms is provided, revealing the outstanding performance of our method, in particular, for large basis sets such as the polarized quadruple-zeta level with diffuse functions.
我们提出了一种高效且具有渐近线性缩放的图形处理单元加速半数值精确交换方法(sn-LinK)。我们超越了之前基于中央处理器的方法(Laqua, H.; Kussmann, J.; Ochsenfeld, C. 2018, 14, 3451 - 3458),采用了我们最近开发的积分界(Thompson, T. H.; Ochsenfeld, C. 2019, 150, 044101)和高精度数值积分网格(Laqua, H.; Kussmann, J.; Ochsenfeld, C. 2018, 149, 204111)。针对几个既定测试集评估了准确性,对于最小网格,误差显著低于1m。此外,还对62至1347个原子的大分子进行了全面的性能分析,揭示了我们方法的卓越性能,特别是对于具有弥散函数的极化四重zeta水平等大基组。