Li Zhenhua, Shi Run, Ma Yining, Zhao Jiaqi, Zhang Tierui
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
J Phys Chem Lett. 2022 Jun 8:5291-5303. doi: 10.1021/acs.jpclett.2c01159.
Converting CO into value-added chemicals through hydrogenation can optimize the energy structure dominated by fossil energy, effectively alleviate environmental problems, and achieve full utilization of carbon resources. However, the traditional CO hydrogenation reactions need to be carried out under high temperature and pressure, causing inevitable secondary pollution to the environment. A fundamental way to solve these problems is to use clean solar energy to convert CO into value-added chemicals and to establish an artificial carbon cycle process. In this Perspective, we highlight recent advances in photodriven CO conversion, including the reverse water-gas-shift reaction, methanation reaction, methanol synthesis reaction, and C hydrocarbon synthesis reaction. Finally, we also discuss the challenges and future investigation opportunities for modulating the selective conversion of CO. This Perspective offers guidance for the design of photodriven CO conversion or even the entire C1 catalyst chemistry for tuning product selectivity and activity.
通过氢化将一氧化碳转化为增值化学品,可以优化以化石能源为主导的能源结构,有效缓解环境问题,并实现碳资源的充分利用。然而,传统的一氧化碳氢化反应需要在高温高压下进行,这会对环境造成不可避免的二次污染。解决这些问题的一个根本方法是利用清洁的太阳能将一氧化碳转化为增值化学品,并建立一个人工碳循环过程。在这篇展望文章中,我们重点介绍了光驱动一氧化碳转化的最新进展,包括逆水煤气变换反应、甲烷化反应、甲醇合成反应和碳氢化合物合成反应。最后,我们还讨论了调节一氧化碳选择性转化的挑战和未来的研究机会。这篇展望文章为光驱动一氧化碳转化甚至整个C1催化剂化学的设计提供了指导,以调节产物选择性和活性。