Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China.
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan.
ACS Nano. 2023 Feb 14;17(3):1725-1738. doi: 10.1021/acsnano.2c09025. Epub 2023 Feb 3.
Converting carbon dioxide (CO) into value-added fuels or chemicals through photothermal catalytic CO hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO hydrogenation. Subsequently, we review the latest progress in photothermal CO hydrogenation into C (e.g., CO, CH, and CHOH) and multicarbon hydrocarbon (C) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO utilization.
将二氧化碳(CO)转化为增值燃料或化学品的光热催化 CO 加氢是缓解能源短缺和全球变暖的一种很有前途的方法。了解光热催化 CO 加氢过程中的纳米结构材料策略对于设计光热器件和催化剂以及最大限度地提高光热 CO 加氢性能至关重要。在本观点中,我们首先描述了几种增强光热 CO 加氢中太阳光吸收和利用的基本纳米材料设计概念。随后,我们综述了光热 CO 加氢成 C(例如 CO、CH 和 CHOH)和多碳烃(C)产物的最新进展。最后,讨论了该令人兴奋的研究领域中的相关挑战和机遇。本观点为光热协同作用提供了对纳米材料的全面理解,并为 CO 利用的合理光热催化剂设计提供了指导。