IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Aug;69(8):2437-2446. doi: 10.1109/TUFFC.2022.3180980. Epub 2022 Jul 29.
The 3-D ultrasound (US) imaging addresses the limitation in field-of-view (FOV) in conventional 2-D US imaging by providing 3-D viewing of the anatomy. The 3-D US imaging has been extensively adapted for diagnosis and image-guided surgical intervention. However, conventional approaches to implement 3-D US imaging require either expensive and sophisticated 2-D array transducers or external actuation mechanisms to move a 1-D array mechanically. Here, we propose a 3-D US imaging mechanism using an actuated acoustic reflector instead of the sensor elements for volume acquisition with significantly extended 3-D FOV, which can be implemented with simple hardware and compact size. To improve image quality on the elevation plane, we implemented the synthetic aperture focusing (SAF) method according to the diagonal geometry of the virtual element array in the proposed imaging mechanism for elevation beamforming. We first evaluated the proposed imaging mechanism and SAF with simulated point targets and cyst targets. The results of point targets suggested improved image quality on the elevation plane, and the results of cysts targets demonstrated a potential to improve 3-D visualization of human anatomy. We built a prototype imaging system with a 3-D FOV of 38 mm (lateral) by 38 mm (elevation) by 50 mm (axial) and collected data in imaging experiments with phantoms. Experimental data showed consistency with simulation results. The SAF method enhanced quantifying the cyst volume size in the breast mimicking phantom compared with no elevation beamforming. These results suggested that the proposed 3-D US imaging mechanism could potentially be applied in clinical scenarios.
三维超声(US)成像通过提供解剖结构的三维视图来解决传统二维 US 成像中的视场(FOV)限制。三维 US 成像已广泛应用于诊断和图像引导的手术干预。然而,实现三维 US 成像的传统方法需要昂贵且复杂的二维阵列换能器或外部致动机构来机械地移动一维阵列。在这里,我们提出了一种使用驱动声学反射器的三维 US 成像机制,而不是传感器元件来获取具有显著扩展的三维 FOV 的体积,这可以通过简单的硬件和紧凑的尺寸来实现。为了提高仰角平面上的图像质量,我们根据所提出成像机制中的虚拟元件阵列的对角线几何形状实现了合成孔径聚焦(SAF)方法,用于仰角波束形成。我们首先使用模拟点目标和囊肿目标评估了所提出的成像机制和 SAF。点目标的结果表明,在仰角平面上提高了图像质量,而囊肿目标的结果表明,有可能改善人体解剖结构的三维可视化。我们使用具有 38mm(横向)×38mm(仰角)×50mm(轴向)的三维 FOV 的原型成像系统构建了一个成像系统,并在成像实验中使用了幻影数据。实验数据与模拟结果一致。与没有仰角波束形成相比,SAF 方法增强了在模拟乳房的囊肿幻影中的囊肿体积大小的定量评估。这些结果表明,所提出的三维 US 成像机制可能有潜力应用于临床场景。