Suppr超能文献

一种用于超声和光声显微成像应用的可水浸式双轴扫描镜微系统。

A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications.

作者信息

Huang Chih-Hsien, Yao Junjie, Wang Lihong V, Zou Jun

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.

出版信息

Microsyst Technol. 2013;19(4):577-582. doi: 10.1007/s00542-012-1660-4. Epub 2012 Sep 13.

Abstract

Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.

摘要

超声和光声显微成像都非常需要快速扫描,然而,声学传播所需的液体环境限制了传统微机电系统(MEMS)扫描镜的使用。在此,设计、制造并测试了一种新型的水浸式扫描镜微系统。为了实现可靠的水下扫描,采用激光微加工制造的柔性聚合物扭转铰链来支撑反射硅镜板。构建了两个由紧凑型射频扼流圈电感器和高强度钕磁碟组成的高效电磁微致动器,以驱动硅镜板绕快轴和慢轴转动。利用激光跟踪法测试了这种水浸式扫描镜微系统在空气和水中的性能。对于快轴,在空气中的共振频率分别达到224 Hz,在水中为164 Hz。在±直流16 V驱动下,在空气和水中的扫描角度均为±12°。在±交流10 V驱动(在共振频率下)时,在空气和水中的扫描角度分别为±13.6°和±10°。对于慢轴,在空气中的共振频率分别达到55 Hz,在水中为38 Hz。在±直流10 V驱动下,在空气和水中的扫描角度均为±6.5°。在±交流10 V驱动(在共振频率下)时,在空气和水中的扫描角度分别为±8.5°和±6°。使用这种水浸式扫描镜微系统进行超声显微成像的可行性已通过一个M25 - Hz超声脉冲/回波系统和一个由三根光纤组成的目标得到了证明。

相似文献

引用本文的文献

1
Acoustic reflector-enabled forward-viewing ultrasound image-guided access.启用声学反射器的前视超声图像引导穿刺
J Med Imaging (Bellingham). 2025 Mar;12(2):025002. doi: 10.1117/1.JMI.12.2.025002. Epub 2025 Apr 9.
4
High-Volume-Rate 3-D Ultrasound Imaging Using Fast-Tilting and Redirecting Reflectors.高速率三维超声成像采用快速倾斜和转向反射镜。
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Aug;70(8):799-809. doi: 10.1109/TUFFC.2023.3282949. Epub 2023 Aug 2.
6
Actuated Reflector-Based 3-D Ultrasound Imaging With Synthetic Aperture Focusing.基于激励反射镜的三维超声成像与合成孔径聚焦。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Aug;69(8):2437-2446. doi: 10.1109/TUFFC.2022.3180980. Epub 2022 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验