Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Sci Transl Med. 2022 Jun 8;14(648):eabh1261. doi: 10.1126/scitranslmed.abh1261.
Tumor evasion of immune destruction is associated with the production of immunosuppressive adenosine in the tumor microenvironment (TME). Anticancer therapies can trigger adenosine triphosphate (ATP) release from tumor cells, causing rapid formation of adenosine by the ectonucleotidases CD39 and CD73, thereafter exacerbating immunosuppression in the TME. The goal of this study was to develop an approach to facilitate cancer therapy-induced immunogenic cell death including ATP release and to limit ATP degradation into adenosine, in order to achieve durable antitumor immune response. Our approach was to construct reactive oxygen species (ROS)-producing nanoparticles that carry an ectonucleotidase inhibitor ARL67156 by electronic interaction and phenylboronic ester. Upon near-infrared irradiation, nanoparticle-produced ROS induced ATP release from MOC1 cancer cells in vitro and triggered the cleavage of phenylboronic ester, facilitating the release of ARL67156 from the nanoparticles. ARL67156 prevented conversion of ATP to adenosine and enhanced anticancer immunity in an MOC1-based coculture model. We tested this approach in mouse tumor models. Nanoparticle-based ROS-responsive drug delivery reprogramed the immunogenic landscape in tumors, eliciting tumor-specific T cell responses and tumor regression, conferring long-term survival in mouse models. We demonstrated that TME reprograming sets the stage for response to anti-programmed cell death protein 1 (PD1) immunotherapy, and the combination resulted in tumor regression in a 4T1 breast cancer mouse model that was resistant to PD1 blockade. Furthermore, our approach also induced immunological effects in patient-derived organotypic tumor spheroid model, suggesting potential translation of our nanoparticle approach for treating human cancers.
肿瘤逃避免疫破坏与肿瘤微环境 (TME) 中免疫抑制性腺苷的产生有关。抗癌疗法可触发肿瘤细胞释放三磷酸腺苷 (ATP),导致细胞外核苷酸酶 CD39 和 CD73 迅速形成腺苷,从而加剧 TME 中的免疫抑制。本研究的目的是开发一种方法,促进癌症治疗诱导的免疫原性细胞死亡,包括 ATP 释放,并限制 ATP 降解为腺苷,以实现持久的抗肿瘤免疫反应。我们的方法是构建产活性氧 (ROS) 的纳米粒子,通过电子相互作用和苯硼酸酯携带外核苷酸酶抑制剂 ARL67156。近红外辐射后,纳米颗粒产生的 ROS 诱导体外 MOC1 癌细胞释放 ATP,并触发苯硼酸酯的裂解,促进 ARL67156 从纳米颗粒中释放。ARL67156 阻止 ATP 转化为腺苷,并增强基于 MOC1 的共培养模型中的抗癌免疫。我们在小鼠肿瘤模型中测试了这种方法。基于纳米粒子的 ROS 响应药物递送重新编程了肿瘤的免疫原性景观,引发了肿瘤特异性 T 细胞反应和肿瘤消退,赋予了小鼠模型的长期生存。我们证明了 TME 重编程为抗程序性细胞死亡蛋白 1 (PD1) 免疫疗法的反应奠定了基础,并且该组合导致对 PD1 阻断有抗性的 4T1 乳腺癌小鼠模型中的肿瘤消退。此外,我们的方法还在患者来源的器官样肿瘤球体模型中诱导了免疫效应,表明我们的纳米粒子方法治疗人类癌症具有潜在的转化意义。
J Immunother Cancer. 2019-3-12
Acta Pharm Sin B. 2025-6
J Exp Clin Cancer Res. 2025-5-26
Biomark Res. 2025-5-19
Theranostics. 2025-4-13
Int J Mol Sci. 2021-7-28
Sci Adv. 2020-9-18
J Immunother Cancer. 2020-2